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I. IKTRODUCnON 

A. Introductory Background 

Th# history of th# #l#ctric pow#r industry has b##n on# of rapid 

growth throughout th# y#ars of #xist#AC#. As pow#r syst## loads hav# 

incr#as#d and n##d for tr«tsf#r of larg# blocks of pw#r has d#v#lop«d» 

th#r# has b##n a continuing incraas# in transmission voltag# l#v#ls from 

about 60 kv at turn of cantury to 765 kv in 1965 (1]. Even now, 

r#s#arch and d#v#lopm#nt work is w#ll und#r way for th# n#%t hi|̂ #r 

voltag# l#v#l which is #%p#ct#d to b# in th# 1000*1500 kv rang# |1,2). 

Th# motivation for th# tr#nd to high#r transmission voltag# is th# n#«d 

to supply low cMt, r#liabl# #l#ctric s#rvic#s to a growing population 

having a vigorous growing in par-capita us# of electric energy These 

and other reasons for hi#er transmission voltage are discussed in 

detail in the literature |1,2,3]. Increasing the voltage of power 

netwrk is associated with a large nuoWber of design criteria for a 

transmission system One of most import«*t requirement is to meet 

the acceptable audible and radio noise level. In fact, conductor size 

and arrangement are determined based <m the radio and audible 

interference level calculaticm, and this may result in selecting a 

larger cwductor area than is dictated by loss economics. 

Since the days of Townsend, corona has been investigated in many 

of its theoretical aspects (5-10). Because of the extreme coâ lexity of 

the phenom̂ won, however, progress attained in a small step, each dealing 
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with a particular problem. In a nonuniform field, various visual 

manifeatation of locally confined ionisation and excitation processes 

can be viwed and measured Ion# before the complete voltage breakdown 

between the electrodea. These manifestation have long been called 

"coronas". A more precise, physical definition is {10): A corona is a 

self-sustained electrical gas discharge where the Laplacian 

(geometrically determined) electrical field confines the primary 

ionisation process to regions close to hi|p* field electrodes or 

insulators. Electrical energy in the cor<ma discharge is transformed 

into other fors* of energy: light, sound, electromagnetic energy, etc. 

The faat current variation produced by strewers induces waves which 

cause disturbances in electronic devices and audible noise. These 

phenomena such as power loss and radio noise caused by corona discharges 

are the main reasons to attract the attention of electric utility 

industry for many years. 

The term radio interference or RX is normally used as a general 

designation for comswnication system interference originating from a 

variety of electrical causes (11,12). It is used throughout this work 

in reference to radio noise cauaed by cor«ia discharges m high voltage 

transmissiw systems in the AM (ŵ litude-modulated) broadcast band from 

10 KHz to 10 MHz. 

In the connection with the trend to higher voltages and the great 

influence of this high voltage on the radio interference, a considerable 

mount of research of the radio interference caused by corona has been 
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carried out in the past haIf-century. RI measurements made on short 

full-scale single- and three-phase test lines as well as on operating 

lines have reaulted in several empirical and semi-empirical methods of 

radio interference calculation. However, the method can be divided into 

two separate groups which will be referred to as analytical and 

comparative (131. 

The analytical method was initially undertaken by 6. E. Adams 

(14), Md has been presented in various papers (14-19). This method is 

based on characteristic quantity called generation function which is 

determined by measurements made in test cages of short lines for 

different conductor arrangements and under known cmiductor surface 

conditions. The generation functions so determined are used to 

calculate electric intensity of the interference field near the line. 

An eî pirical fonmla (2) for generation fmctions, based on the results 

of cage and line tests on a large nunAer of line configurations, was 

established. 

In the coô rative methods, a well-defined RX field intensity 

measurement, which includes the combined effects of SI generaticm and 

propagation is used as reference value. All contrative method 

representation of the interference field intensity are expressed as the 

sum of the RX reference value and correction factors for gradient, 

dimeter, bundle, distance, frequency, and foul weather. Comparative 

method can be found in ntnerous literature (20-25). 
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Th# basic advantag* of th« analytical method is the flexibility. 

It can b# usad for any lin# configuration «van unusual onas. TWo 

particular advantages for tha comparative method of analysis is: (1) The 

coefficients and constants appearing in the several correction terms may 

be determined using operational or test transmission lines rather than 

specialised lateratory facilities, and (2) the physical processes 

contributory to radio interference generation and propagation are 

individually identified. 

However, the R1 analysis methods, either analytical method or 

comparative method, do not entirely explain the difference between the 

measured RI fields of lines, nor the substantial fluctuation in level 

which have been obtained frm a given line in the course of time |26). 

S. Problem Formulation 

Radio interference, generated by corona discharges, is caused by 

the movement of the space charges in the electric field in the vicinity 

of conductor surfaces of high voltage transmis#i«m line#. The corona 

di#charge# are due to a high electric field in the vicinity of the 

conductor (14,181, 

Corona source# are known to be random both in magnitude and 

repetition time (7,9,10,13,14,19,27|. In mwt of cases, the corona 

currents injected into the cwductor surface of a transmission line have 

been repre#ented by the spectral density to deal with the randoamess of 

the corcwia generatiw. To simplify the analysis. cor*wa generaticm has 
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also baan assumed to ba uniform along tha Una and rsprasantad by a 

constant valua (14,15,17,IB,19). 

Nowavar, spectral density of corona generation has meaning only 

when the corona generation has the property of at least wide-sense 

stationarity. Therefore, without developing the statistical eudal for 

corona generation, the power spectral repreaentation for corona current 

would be incosplete and probably inaccurate. In this connection, 

physical and analytical models of these corona processes appear 

necessary. 

In t9S6, it wss discovered (28) that it was not the imperfection 

of ACSR conductors but the airborne substances which produce the noise 

level of EHV lines during fair weather. Tseng-Wu Liao and N, A. Hoglund 

cmcluded (29) that the radio Mise level during fair weather depends 

primarily m the sources of pltasea not on the metal protrusicms of the 

conductor material which will give mly glow-type corona at the system 

operating voltage. While in the glow conditio* even with many sources 

the radio noise prcKhtced is generally very low. It has also been found 

(29,30) that each p̂ itive streMwr repels other strê er# to form the 

distinctive plume shape. Consequently, the assumption of uniform 

distributicm of corona generation along the line â tears inaccurate in 

the RX analysis. Therefore, discrete random distributicm of corona 

generatitm would be more suitable in the R1 analysis rather than uniform 

distribut iw. 
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C. R«s««rch Objective# 

The purpot* of this study is to d#t#nmin# the statistics! nsturs 

of RI gsnsrstion, propagation, and racaption. Tha specific objectivas 

of this research may be summarised as follows: 

1. Determination or poatulation of the statistical properties 

of radio interference generation such as frequency, man 

peak-amplitude, and waveform. 

2. Solution of the transmission line equations with random 

sources in time «id space based on stochastic methods. 

3. Determination of the received radio interference field 

based on random corona sources in time and space. 

4. Determination of the relationship between the theoretical 

randoi parmsaters and Rl levels obtained from empirical 

formulas, specially generation function. 

0. Research Outline 

To achieve the aWve objectives of this work, the primary focus is 

the establislMMnt of a stochastic model to predict radio interference 

field caused by cor̂ a discharges on high voltage transmissiez systems. 

This requires the application of modem statistical methods to random 

phenmien̂ , corcma discharge, which influence the design and operation 

of high voltage transmission systems. 

Corona discharges are basically random both in time and space. 

Phenomena, or processes, of this kind are characterised ̂  the 
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ttiiprtdictabU chanft» in tiM and spact: thay exhibit variations from 

observation to observâti<m which no amount of effort or control in the 

course of a run or trial can remove. However, if they show regularities 

or stabilised properties as the number of such observations is increased 

under similar conditions, these regularities are called statistical 

properties and it is for these that a mathematical theory can be 

constructed. Physical processes in the natural world which possess 

wholly or in part a randos mechanism in their structure and therefore 

exhibit this sort of behavior are called stochastic processes. Since 

corona generations in the high voltage transmission lines in part 

exhibit some regularities with regard to radio interference field, they 

may be represented by mathematical description as stochastic processes 

The necessity of statistical approach stems, of course, from the fact 

not only that it is î »sible to exactly specify the characteristics of 

corona generation but also that the very laws of nature are themielves 

idealization, which ignore all but the principal characteristics of the 

model and of necessity omit the perturbations. Even then, a detailed 

applicaticm is often unworkable because of the inherent ccm̂ lexity of 

the system, so that a statistical treatment is productive. 

this work is divided into seven Chapters and two Appendices The 

first chapter starts with an introduction to the iî rtdnce and 

prediction methods of radio interference analysis in power transmission 

engineering Corwa discharges on high voltage line are responsible for 

the power loss and radio interference. In the published literature 
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{2»3,14-26), two formulation# to predict RI level are found: snelytical 

and cmparative method#. Brief discussion of these RI analysis methods 

is presented. However, these RI prediction owthods, either analytical 

or comparative method, do not entirely explain the difference between 

the masured RI fields of lines, nor the substantial fluctuations in 

level which have been obtained fr<Mi a given line in the course of time. 

This may be caused by inaccurate corona generation model made in each 

method. Thus, it appears necessary to develop a rigorous statistical 

model to predict the RI fields caused by corona discharges on high 

voltage transmissicm systems. 

Chapter 2 presents the first and sectmd mwMnts, specially the 

concept of power spectral density of a stochastic process. Since the 

mwt of the contents in this chapter are we 11-presented in the Chapters 

3 and 4 of (31) ami in (32,33.34), only results «td single descriptions 

will be presented. For many applications. Fourier transform turns out 

to be the appr̂ riate device for treating the steady-state conditions. 

It is shown that any aperiodic raxtdcm disturbance such as corona does 

not possess Fourier transform in the usual sense. The concept of 

spectnm is broadened in order to deal with corona discharges from the 

frequency point of view in the steady-state. Based this broadened 

C4wcept of spectrins or Fourier transform the average power density of 

any random process is represented by the power spectral density. 

Chapter 3 starts with the reviews of the basic characteristics of 

cor<ma discharges required in the stochastic current modeling. It is 
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prcsanttd that only pulsativa fora» of corona discharges are rasponsible 

for th# R1 flalds of concern. Thus, the discussion of corona is 

confined to pulsative forM of corona. The rest of this chapter is 

devoted to a stochastic corona current modelling which determines or 

postulates the statistical properties of radio interference generation. 

A rigorous statistical model for corona current is proposed. Based on 

the proposed corona current model, the power spectral density of single 

corona current source has been evaluated. Upon som assumptions, it is 

proven that corona current is a at least wide-sense stationary process. 

Chapter 4 deals with stochastic analysis of R1 propagation and 

reception for single-conductor transmission line terminated with 

arbitrary inqMdances at two ends. For any transmission line, the phase 

currents and line to ground voltages are related at any points of line. 

A rigorous stochastic analysis is presented to obtain transmission line 

equations of single-conductor line subject to random corona. Solution 

of transmissimi line equation* yields a specific ewmber («ample 

function) of ensemble interference voltage process. The ensemble 

property of this radio interference voltage is represented by the power 

spectral density of process. At an oh#ervati<m point in the vicinity of 

line, the interference field strength is then confuted from the 

electrcKitatic gradient of the total interference voltage. With the help 

of Wiener'Kbintchine theorem mean (ensenAle average) square radio 

interference field is derived. 
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Chapter 5 la basically a application of the stochastic RI analysis 

davalopad for single-conductor line to actual three phase line. Similar 

analysis as in the case of single conductor is applied to develop 

transmission line equations. Transmission line equations are usually 

composed of three sets of coupled differential equations. The solution 

of transmission line equations is carried out using the theory of 

natural modes in which the voltage and current are expressed in terms of 

modal components by means of nodal transformation matrices. The main 

advantage of this modal method is to decouple the coupled transmission 

line equations. In this chapter only a special type of line which 

terminates both ends in networks prmhtcing no or negligible interamie 

coupling is considered in order to avoid extreme difficulty in the RI 

propagati<m «lalysis. In this case, the propagation of each mode is 

analysed as in the case of singe-conductor line having same 

characteristic impedance. propagation constant and terminal in̂ edance 

for each mode. 

Chapter 6 connects the random parMeters generated fro# the 

stochastic Rl analysis to the RI levels obtained fro# the 

ê irical/sMii'en̂ irical formulas, specially generation function. To 

predict RI level with the developed stochastic RI malysis method, the 

rando# parameters generated by this method mist be determined by a set 

of experiments. Since considerable mounts of RI measurements have been 

made on short full-scale single- and three-phase lines as well as on 

(grating lines, however, the best way to determine rando# parmeters is 
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to utilisa the considerable amount of existing R1 Masurenents» instead 

of a new set of experiments. In this connection, the power spectral 

density of corona generation is related to the generation function. 

Chapter 7 includes results of RI field calculations using a 

developed digital algorithm (listed in Appendix II) based on the 

stochastic RI analysis for different parmnaters which affects the RI 

levels. In order to demonstrate practical applications of newly 

developed stochaatic RI analysis, radio interference field is calculated 

for a single-circuit three-phase horizontal 34S kv transmission line. 

The effects of different parweters on the radio interference level are 

cM̂ red. 

Chapter 8 is devoted to conclusions. The principal ccmtributions 

which the stochastic RI analysis makes are presented. 

Appendix I reviews soma of probability theory and basic cmicepts 

of random variables and stochastic processes required in Chapters 

2,3« and 5. 
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11. STATISTICAL CONSIDERATIONS 

Th# purpott of this chapter is to prsssnt th# background materials 

rsquired in subssqusnt chapters, specially the concept of the power 

spectral density of a stochastic process. Most contents in this chapter 

are well-presented in Chapters 3 and 4 of (31Therefore, only basic 

definitions and results of the Fourier transformation and the power 

spectral density of a stochastic process which are needed in the 

subsequent chapters are presented. The statistical preliminaries which 

are needed in this chapter and the following chapters are reviewed in 

Appendix I. 

A Fourier Transformations 

Let s(t) be a real function defined over (-• < t < •), and 

absolutely integrable, then the Fourier-transform pair of s(t) is 

defined as 

F(f(t)) » J" e'̂ "*g(«) dt » g(M) (2.1) 

with 

F'*{g(«)) • g(t) » /• ê ^̂ gC») df. 

Suppose g(t) » ŷ ^̂ (t), some suitably bounded member of an 

ensemble, in the observation interval (0,T), so that g(t) » ŷ ^̂ t) = 

ŷ ^̂ (t) in with aero outside the region (O.T). Then, 
T 

(2.1) can W applied to get 
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f_(w) » dt 
T T 0 

and M Ions ** T is finit*» this transfor* exists in the usual sense. 

However, when random variables are dealt with, it should be 

observed that F(ŷ ^̂ (t)) • Un F(ŷ ^̂ (t)) does not exist since 
T*m T 

ŷ ^̂  does not die down to aero as t -* i <• with sufficient rapidity to 

ensure convergence, nor does ŷ ^̂  possess a definite periodic structure 

which could be interpreted as a line spectrum in term of 6 functions. 

Strictly, then, it is observed that the Fourier transform of any 

steady state aperiodic disturbance does not converge to a finite limit 

for all fre<tuencies. Therefore, it is needed to extend the usual 

notions of the Fourier transform to include random function where the 

f Ml liar treatment fails. 

Consider a neadier ŷ ^̂ (t) of an ensemble y(t) such that 

converges. This means that lim ŷ ^̂ (t) 0 sufficiently rapidly so 

that 

dt < • 

then, hf Flancherel's theorem, we have 

/• » /* df < • . (2.2) 

When the disturbance ŷ ^̂ (t) vanishes outside some interval 

(-T/2,T/2), an average power, or average intensity, over the interval In 

question, can be defined according to 

pU)(T) = i/T ŷ ^̂ (to)' dt. » l/T /• dt. 
y -T/2 ° " — T ® " 
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wh#r# • ŷ \̂t) (-T/2 S t S T/2) and is aaro outsida this 
T 

interval. From Eq. (2.2), this can ba written in still another form, 

pO)(x) • /• |y(̂ )(M)|*/T dl, 
y -• T 

where » /* ŷ ^̂ (t) dt. 
T — T 

Defining. 

- 2|y(̂ )(w)_|'/T , 
y 

we have 

p(j)(T) . /• df 
y y 

so that My be called the average î er density of ŷ ^̂ (t). 
y T T 

If ŷ ^̂ (t) is a mwAer of an ensemble y(t) so that ŷ ^̂ t) does 

not die down properly to zero as t -* i «, average power P^^^ean still 
y 

Imi defined as the limit T • of i.e., 
y 

» lim . (2,3) 
y T*. 0  ̂ * 

It is shown (page 140 of |31J) that, although lim P̂ ^̂ (T) 
T*» y 

exists, it is not tnte lim W^̂ (̂m). approaches a definite limit. 
T*. y  ̂

In fact, lim Ŵ ^̂ (w)_ » Ŵ ^̂ (*) is usually bounded but 
T*m f  ̂ y 

««cillâtes indefinitely as T -» •. 

An immediate cwwequence is that the order of the limit and 

integration in Eq. (2.3) cannot be exchanged. More i«̂ >ortant, this 

result indicates that the power spectral density in order to be 
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suitably dsfinad in th« limit T -* <•, must b# sxprsssad as a property of 

th« snsombl# as a whole. 

Consider, accordingly, an ensemble ŷ (t) which is obtained frma 

the ensemble y (-« < t < •), with E(y*) < « for every finite interval 

(t), by truncation, so that ŷ  vanishes everywhere outside (-T/2,T/2). 

Fourier"transform pair of ensemble ŷ Ct) is defined in the mean 

square as follows: 

y_(») • F(y_(t)) » yCt) dt 
^ ^ 'V2 

» /" y-(t) dt , w#2#f (2.4) 
•m 

with the usual inverse relation 

ŷ (t) - F'*(ŷ (»)) - r ŷ (w) ê "̂  df . 

E. Power Spectral Density 

Define 

Wy(w)y » E(2/T yy(w) ŷ (w) ) » 2/1 |F{ŷ )|» . (2 5) 

Definition of Fmtrler transform In the mean square guarantees the 

existence of V̂ (w)̂ . Substituting Eq. (2.4) Into Eq. (2.5), we have 

¥y(w)̂  * 2/T / y(t̂ )y(tp ' ̂2̂  dtjdt̂  

= 2/T / M„(t,.t,) ' ̂2̂  dt.dt. . (2.6) 
•T/2 y * « *  ̂

where, ' y(tj) y(tg). 
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Thtt Fouricftransfoni of the power density as defined over 

the ensemble, is 

W (M)_ ê *** df • 2/T / M (t,,t_)dt dt. /" *-jw(ti"t2"*)df 
•• ' ' -T/2 y ' * *  ̂

- 2/T M*(t..t..t) dt. 
-T/2 * » » 

since /* df • ̂(tg-t̂ +t). 

At this point, it is assumed that y(t) be a wide-sense stationary 

process so that MyCt̂ .tg) • My(t̂  - tj). Then, Eq. (2.6) becoms 

- 2/T / M,(t, - t,) e"j*(*l • *2)dt,dt_ 
y i .T/2 y *  ̂  ̂

2 /][ e"-̂ ***dx i 0 
•T 

where, (I • |x|/T). ftew if M̂ U) is continuous, 

lim %*(*)_ » 2 /• Mi (%)e"j** dx » 2 F{M„(x)) 
T** y * .* y y 

• y«). . 

The power spectral density Wy(w) of a random process y(t) is 

defined by 

n e») « lim W„(w)- • lim B(Vf̂ Ĵ »)) 
y T*» y T*«, y 

7»i 
where, this average must be carried out before the limit is taken. 

» lim 2/T |yiJ'(*)|* 
T̂ # 
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In suamary, th« power spectral density and the autovariance 

function of y(t) are each other's Fourier transforma. I.e., 

Wy(ii) « 2 FfMy) , * " 2#f (2.7) 

My(«) • 1/2 r(Wy) . (2.8) 

E(|s. (2.7) and (2.S) are known as the Vlener-Khlntchine theorem. 

This theorem Is easily extended to complex process y If we define 

My(t) • E(y(tj) y*(t2)) . 

C. Spectra and Autocorrelation Function 

In the physical world, a single meidwr alone of the enseWde y(t) 

Is normally available, lut if the process is ergodic, the Wiener-

Khinechlne theorem can be used to determine the ensemble spectral 

density of the process from the sf̂ ropriate time average on this single 

member function. 

To show this» define the aotoeorrelatien function R̂ ^̂ Ct) of a 
y 

mwsber ŷ '̂ (̂t) of the ensemble y(t) as follows; 

• lim l/T * t) dt., 
 ̂ -T/2 0 0 0 

where, t » t̂  - . From the definition of the Fourier transform, we 

have 

(j) . (j) (j) 
B (t) » lim l/T / y_ (t.)y_ (t. + t) dt_ 
* ... * w * w V 
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- lia 1/2 r df . (2.9) 
T*— "• 

Nttxt, t#k# th# tnsMibl* av#?*## of both sldM of Eq. (2.9) to g«t 

HT- . -7ÎT— 
(t) • 1/2 /• H» V (*»)- df 

' .. T*» ' 

• /J Wy(w) co«(»t) df . 

If y it wid#-##a## stationary, 

TFT— .>2Tn—m 
R (t) - lia 1/T y. (t.)y_ (t. + t) dt. 
y T*. -T/2 T o T o o 

• M (t) lia 1/T dt. • H (t) . 
y T*. .T/2 " y 

Now if y(t) is «rfodic. 

» MyCt) with probability on# 

so that th# Wi#n#r-khintchin# thcorca b#coa#s finally 

R(j)(t) » 1/2 F'*(W ) 

f ' 

W (*) • 2 F(R(j*(t)) with probability on#. 
* y 
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111. STOCHASTIC CORONA MODELING 

A. Prop«rti«s of Corona • Lit«ratur« R«vi«w 

In the nonuniform field various visual manifastations of locally 

confined ionisation and excitation process can be viewed and meaaured 

long before the complete voltage braakdown between elactrodas occurs. 

These manifestation hava long been called coronas 

A precise, physical definition of corona discharge is (10) : A 

corona ia a aeIf-sustained electrical gaa discharge where the Laplacian 

(gawsetrically determined) electrical field confinea the primary 

ionization processes to regions close to high-field electrodes. A DC 

corona is called positive, negative or bipolar according to the polarity 

of the active electrodes (10). AC coronas are pcv9r frequency fed in 

high voltage power lines. Sometimes corona are quite noisy &x»th 

acoustically and on a wide range of radio and television broadcast 

bands. For exaô le, high voltage power lines may exhibit corona 

discharges that cause considerable radio interference and acoustic 

noise. 

The modes of positive corona in air are onset pulses. Hermstein 

glow, and steamers. The negative corona modes are Triche! pulses, 

pulseless glow, and negative streamer* (8,9,10). 

It has been known that only pulsative forms of corona can produce 

significant radio interference on the high voltage transmission systems 

(8,11). In long gap. the highest noise level is produced tqr positive 
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straasM» undar AC excitation. Tha positiva straamars undar DC voltaga 

giva a slightly lowar lavai, Trichai puisas a much lowar orna. 

Tharafora, it saams raasonabla to confina tha discussion of corona 

dischargas to tha positiva pulsativa forms of corona as far as tha radio 

intarfaranca analysis is concamad. 

1. Onsat puisas 

Tha suddan appaaranca of corona puisas at tha thrashold having 

magnitudas «ich highar than tha ground currant marks tha formation of 

straMar (or burst puisas) dischargas. Tha puisas occur randomly and 

intarmittantly. 

Tha currant pulsa of thasa strawars has a risa tima of tha ordar 

of 20 to 40 nanwaconds. Thay dacay to a half-paak valua in about 100 

nancwacfmds 18,9|. Tha amplitudas of onsat straamars range from a faw 

tenths milliwqwres in bî  divergent fields up to a few hundred 

milliampares at large electrodes |8). The repetition rate of onset 

streamer* increase» with the voltage up to a certain critical value at 

which the negative charge developed chokes off this form of discharge 

Rough estimates have indicated that the frequency increases with voltage 

from zero to a peak of 3000 to 4000 pulses per secmul, after which the 

pulse fre<{ttency declines but its duration increases {7]. 

2. Streamer* 

This intermittent mode develops from the glow when the field is 

adequately nimuoiform. Given a certain anode, the gap spacing oust be 

large enough so that these streamer* can materialise. 
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Th# frequency of occurrence of streamer# ranges from 1000 pulses 

per second near their onset to 10000 pulses per second just before spark 

occurs |9]. 

Their mplitude is of smm order as the amplitude of the onset 

streamers The length, amplitude, and repetition rate of pulses grow 

with the voltage. 

The observed form of streamer current pulse is the function of 

streamer length, amplitude, and field configurations. The rise times of 

streamer discharges observed on transmission lines and apparatus are 

usually in the nanosecond ranges (below 100 nanoseconds) |8|. 

The shape of the positive pulse in the high voltage transmission 

lines is of the follwing double exponential form (35.36); 

i(t) » A(e'" • e'***) . (3.1) 

In the relaticm (3.1). the parameters A. a. and b depend upon the 

high voltage line geometry, and voltage as well as the atmospheric 

conditions. 

Perel'man and Chemobrodov (37) satisfactorily approximated the 

shape of positive pulse bf the formla 

i(t) » A % t e(* ~ (3.2) 

where % is the amplitude of the pulse, and % » (1.0 • 1.4)*10' 

Formula (3.2). which is a special case of expression (3.1). 

provides a simpler expression for the frequency spectrum of the î ulse 

than fonmla (3.1). 
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3. Puïaativ corona diachmra## undor alf mating field# 

When alternating potential is applied to the electrodes, several 

differences will be observed in comparison with the corona in the DC 

field. 

There are two primary sources of these differences i8,9|; 

1. Oscillation of the voltage. 

2. Oscillatory movement of the space charge developed by 

corona. 

The first phenomenon results in continuous changes of corona 

generation conditions. Thus, several modes may appear in one voltage 

cycle. The second phenoawnon exists only in gaps Icmger than the 

distance of the crossing during the period fro# corona extinction to the 

voltage decrease to zero. The critical distance in uniform field, at 

power frequency, is about 1.2 m. When the critical distance is 

exceeded, the negative-ion space charge will suppress the develojmwnt of 

onset pulses. If. under the alternating field, the negative ions do not 

have «Rple time to escape to the electrodes, they will accumulate and 

force the steady glow to materialise. 

The effect of the negative ions on the development of the 

breakdown streamer# during the positive half-cycle is not very clear. 

In fields of moderate gradient (spherical and cylindrical electrodes), 

the onset of the breakdown streamer is lowered, whereas in highly 

divergent fields, the reverse seems to be the ease. 
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B. Stochastic Corona Currant Modeling 

In practice, corona sources are distributed randomly along the 

length of the line. At a given point on the line, the corona current 

induced in a transmission line hy corona discharge varies randomly with 

time, and it may be considered as pulse trains with random shapes. Such 

currents are generally best described in terms of stochastic processes 

in time and space. In this section, a stochastic model is thus proposed 

for the corona currents. Since only positive pulsative forms of corona 

can produce significant radio interference on the high voltage 

transmission systems (8,11), it is sufficient to consider only pulsative 

positive corona as far as the radio interference analysis is concerned. 

Let J(x,t), o * % * L, — < t < be the corona current injection 

at time t and a point x along the transmission line. At a specific 

location (x.t). J(x.t) denotes the random current with the value in R » 

«»), and can be called a random variable mapping from C to R. where 

fi is the sangle space consisting of all possible corona generations 

A stochastic process J(x,t) may be seen as an indexed fmiily of 

random variables. The collective outcome of all the experiments 

comprising random process J(x.t) is denoted Ĵ ^̂ Cx.t), the 

realization of the stochastic process J(x,t). The outcome of the randon 

variable associated with any location (x,t) is referred to as the state 

of the stochastic process at that location. 

At a given time tg, JCx.tg) can be modeled by the Poisson process. 

If it is assumed that the corona current is so localized to one point on 
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th« transmission line that it can b« raprcsantsd by a point current 

source, the corona currents will inject into the conductor only at 

discrete points, for example, x̂ , Xg,.., Here, Xj's, j » 

1,2 K, may be called the arriving points. The mmber of corona 

sources N is of course random process mapping from 0 to (1, 2, 

Let be the process denoting the number of the corona sources on 

the line section where * (0, . Since can be 

assiMMd to be independent of the number of corona in an interval prior 

to the interval and the probability that a certain corona 

occurs in a certain interval can be thought of independent of where the 

interval situated, N may be modeled as a Poisson process. It is noted 

that N depends only on the length of line, so that can be 

replaced by 

At a given point x̂ , JCx̂ .t), * < t < -, may be considered as a 

stochastic process in time with a value in R* • {0, and denotes 

pulse trains. The shape and repetition rate of corona pulses comprise 

of randwi parameters which allow us to treat a variety of corona sources 

that may be operating concurrently but may arise from different 

mechanisms. 

Assumptions: 

I Corona pulse trains are almost periodic in the sense that 

w*ly (me pulse can exist in each period interval 

2. The p«ak-value of each pulse varies randomly from pulse to 

pulse. 
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3. Th* puis* shape can be represented by a function of some 

randMi parameters. 

4. The duration of each pulse is so short as to prevent 

overlapping between period intervals. 

5. Pulses vary in position within the period interval, i.e., 

pulses have leading edges such that the period interval is 

not exceeded. 

6. Corona current is so localized to one point on the 

transmission line that it can be represented by a point 

current source. 

Let J(%,t) be the corona current density defined on (0, L| » 

•), where L is the length of transmission line. A representation 

of corona current density J(x.t) truncated in the interval |-T/2, T/2|, 

which consists of exactly 2N pericwis, each B seconds long nay be 

represented by 

N(L) M (J) O) 
jiĴ (x.t)y » I Z ŷ  û (t • mB • ) 6(x - x̂ ) 

for x « lO.LI, t t I-T/2.T/21. (3.3) 

where: 

u (t-aB-t ) » u (t) for siB + e_ S t S 
m u m  m  

N(L) ; the point process denoting the nuiËber of corona 

sources ou the transmissiim line tO,L). 

ŷ  : the stochastic process denoting the peak aaqplitude 

of the m th pulse in time. 
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: the stochastic process denoting the leading edge 

of the m th pulse in time. 

: the stochastic point process denoting the position 

on the transmission line where the corona occurs. 

6(%) : distribution function satisfying 

/* S(x-xj) f(x) dx • f(Xj) 

for any continuously differentiable f(x) which dies 

do«m quickly as x goes to ± •. 

In equation (3.3), it should be noted that N(L) and x̂ 's, n * I. 

2...., are actually the functicms of time, and ĉ 's are the functions of 

X. In the following, however, the statistical independence between time 

parameters and space parmeters will be assumed to make the spectral 

analysis of J(x,t) more feasible. 

Under certain assŵ tion#, JCx̂ .t) can be easily shown to be a 

wide-sense stationary process (section D). J(xQ,k) is thus assumed to 

be a stationary process in the following section. 

C. Power Spectral Density of Pulse Trains 

At a given point x̂  on the line, a realization of stochastic 

process Ĵ -̂ (̂t) on time (-». «*) is the summation of the pulses which has 

the properties assumed in the preceding section, and can be represented 

by 
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ni - O) O) 
jlj'(t) " I y u (t - nB - * ). (3.4) 

n«— 

In this section, it is mttsmpted to deriv# th# power spectral density of 

J(xQ,t) which will be useful in the following chapters. 

To obtain the power spectral density Wj(tt) of J(t), start with a 

mambar of the truncated ensemble 

nv N (j) (j) 
j(J'(t)_ • I y« u (t - nB - ) (3.5) 

T n".N " " " 

where u_(t) is unity, u_(t) vanishes outside an interval i < B and i 
o flwx n 

is the Mxims duration of a typical pulse. Similarly c is also 

bounded, so that c is less than B • t to prevent overlapping between 

period intervals. The titter restriction of strict stationarity will 

be imposed on the process c. 

If it is assumed that Ĵ '̂ (̂t)̂  is absolutely integrable, i.e., 

/" |j(j)(t)_| dt - |j(j)(t)| dt < . , 
 ̂ "T/2 

Fourier transform can be defined in the mean square as follows: 

m M) N (j) (j) 
F(jlj'(t)_) » jrj;(w)_ » m y„ (t -nB - )) 

* * nm.H ® ** 

N (j) (u 
» £ y_ «_(«) •xp{-jw(nB + ))• 
n"-N " ° * 

where, u„(») » F{u„(t)) and w » 2#f. 
n n 

From the definition in Chapter 2, the power spectral density of 

process J(t), -• < t < •, can be written as 
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W,(*) " lia E(2|j(j)(*)Tl*/T) . (3.6) 

In th« above aquation, it muat be noted that average onist b« carried out 

before the limit is taken. The squared absolute value in 

the Eq. (3.6) is 

• t y (j) |u (w)f* +11 
 ̂ n—N ** " n.m"-N » » " » 

n#m 

* exp(-J*»(nI-aiB+fp̂ -ff"̂ )̂). (3.7) 
n # 

Substituting Eq. (3.7) into Eq. (3.6) and noting that T « (2N+1)B, 

we have 

2 Vf * „0)*i 
«J*»» • iSdSÎIÎB 

* A 
n.w-N " ® 
n## 

» û (w) «*(») exp(-j»B(n-») - (3,8) 

The first tens in the bracket can be computed easily provided that 

ŷ  are independent of ramkm parameters of û (t) as follow»: 

jy* |u(«)|' . (3,9) 
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In th« derivation of Eq. (3.9), it is ssstuMd that y and u ara 

stationary stochastic procassas. 

To raduca tha sacond tarm in tha braekat of Eq. (3.8), it will ba 

furthar assumad that random paramatars of tî (t) ara indapandant of thosa 

of Uĝ (t) whan n # m, and y and c ara mutually indapandant. Than, it can 

ba raducad as follows: 

tv*» n,m""M 

n axp(<'JuB(n-m) • 

n## 

u-îSîhrB 

MO 

m'H 

»T(y)'|ûT3T|' % , (3,10) 
» k»— 

MO 

Substituting Eqs. (3.9) and (3 10) into Eq. (3.8), wa get 

w,(*) * (f)'lTOTl' I . 
^ * k#'. 

k#0 
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Now it cm be shown that E( is negligible at high 

frequency which is the main interest in the R1 analysis. Let us assume 

that the epochs are uniformly distributed in the interval (B/2-t) so 

that 

fj(«) • l/tg for 0 1 t 1 l/2-t 

where f|(c) is the probability density function of c. 

Then, the expected value of ê *(*2 *1̂  is 

E{ ej*('2 • "l̂  ) » |E(e"j**)|' 

• |/® l/tg e"̂ *̂  dc)» 

• 2 sin'wtp/(»tjj)' 

i 2/(tttQ)' . 

The power spectral density Wj(w) can be, therefore, approximated 

practically by 

Wj(w) » 2/B E(y') E(ftt(»)|') . (3 11) 

D Stationarity of Pulse Trains 

Consider pulse trains J(t) represented by Eq. (3,6). It can be 

shown that pulse trains J(t) is a wide-sense stationary process if the 

following# are satisfied; 

1 y, s. and u are identically distributed stochastic 

processes which are mutually independent. 

2. û (t - t) are essentially zero except for small t-i. 
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Under above assumptions, it can b« shown that the mean value is 

constant and the variance of J is the function of t*t in a following 

way: 

m 
B{J<t)) • E{ I  ̂ylu (t-nB-g ) 

n »* » » n n 

" y I i*/® u (t-nB-ĉ ) t(t } fCu ) d* du 
A n n n n n 11 0 

t-nB I 

t"(n+l)B 

/"u(q) dq ) f(u) du 

(3,12) 

B{J(t) J(t-t)) • E{ 

» d*_de_du_dw 
n n n n 

y' I 
B t-(n+l)B 
-» • t-nB t-t-fliB -J • t-t-mo 

+ / / / 1 
B •• t«(n+l)B K-i"(m*i)B 

»»<'«»> -b'S.-'» """B 

".'V 

dq̂ dq̂ dû ou, 

B •• 

? 
+ zL / /// u(q) u(q') f (u) dq dq' du du' 
B — 
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« F(i) . 

where 

Q • /" u(q) dq 
•m 

f(«) "y when 0 1 c 1 B 

Thus, it is shown chat J(t) is 

under above assumptions. 

<3. 

a wide-sense stationary process 
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IV. RADIO INTERFERENCE CAUSED BY CORONA ON THE SINGLE CONDUCTOR LINE 

A. Introduction 

The RI l«v#l of transaission line depends on two principal 

calculations: the generation ot RI near the conductor and the 

propagation of the interference along the line (19|. 

The RI generation is generally characterised in Chapter 3. The RI 

propagation depends on the electrical characteristics of the line, the 

line length and the iiqiedance characteristics of the line terminations. 

The solution of transmission line equations with suitable boundary 

ccmditiims is presented for the RI propagation calculation. 

The case of the single-cwxductor line is treated in this chapter 

for the sake of simplicity and completeness. Detailed analytical 

expressi(ws presented in this case, however, are not to be found in 

published literature and are therefore to be believed to be very 

original and useful. Single-conductor RI analysis not only provides the 

general principles of RI analysis, but also is directly usable in the 

SKtlticonductor analysis. 

Application of the propped analysis to sose practical line 

configurations will be followed in later chapters. 

B. Transmission Line Equations 

COTsider a single-conductor transmission line which has a 

resistance per unit length R, inductance per unit length L and shunt 
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admlttanc# p«r unit length C. A short length of line Ax, is shown in 

Fig. 1. J(x,t) is the corona current per unit length injecting into the 

conductor» which is the random field in space and time. 

With polarity marks and current directions as shown in Fig. 1, 

Kirchhoff's voltage law and current law give 

AV " -R dx I - L dx il/H 

AI • 'C dx iV/lt - J dx . (4,1) 

In the limit as Ax * 0. Eq. (4.1) beccmes 

IV/8X » -R I - L ai/at 

ll/ix • -C ÎV/H - J(x.t> , (4,2) 

Let us consider next an ensemble J(x,t)̂  which is obtained from 

the ensemble J(x,t). -• < t < •, with E(J') < • for every finite 

interval (t). by truncation so that vanishes everywhere outside 

(-T/2,T/2). Then, the transmission line équation (4,2) can be written 

as follows: 

ivyix » • R • I» >î /at 

>I^/9x » - C 9Vj/H - . (4.3) 

where Vj and Ij are the voltage and current induced from when we 

consider only the corona events in -T/2 S t S T/2. 

In the next step. V̂ . and Î  are assumed to be absolutely 

integrable in terms of t for -T/2 S t S T/2, i.e., 

T/2 
/ |f_| dt < • , f_ » J_, V_, or I_ (4.4) 
-t/2 * T T T T 
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L 4x 
R Ax mv 

nrm—'vv\ 

C) 

I+AI 

J Ax C Ax 

FIGURE I. Equivalent circuit of transmission line subject to corona 
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than there exist Fourier transformations of 1̂ , and in the mean 

square. 

Taking the Fourier transforms in terms of t on both sides of Eq. 

(4.3), we have 

aV(x,*)?/*» » - 2 Kx.tt)^ (4.5) 

9I(x.u)̂ /3x • • Y V(x.tt)̂  - J(x,M)y (4.6) 

where fy(x,w), f • V, 1, or J, is the Fourier transform of f(x.t)̂ . 2 

and y are line parameters defined by 

2 " R + j*L 

Y • jwC . (4,7) 

In the derivation of Cqs. (4.5) and (4.6) the system is initially to be 

at rest, i.e.. 

V(x,-«») » l(x» "•) » 0.0 (4,8) 

Equatixms (4.5) and (4.6) are the transmission line equations for 

the single-eonduetor line subject to corona in «T/2 i t S T/2. It 

should be noted that J(x.ti>)̂ , V(x.m)̂ , and Kx.w)̂  are not defined in 

the usual sense because they are not integrable in •• < t < •. Hence, 

the Fourier transforms of V(x,t) and Kx.t) are not defined in the usual 

sense. However, the definition of Fourier transform in the mean square 

sense guarantees the existence of 

Wy(»)̂  » E{2/T y(«)j y* (*)), for fj » V̂ (x,m), I,̂ (x,»), 

and in the limit as T Wy(«)̂  is defined well. 
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In the following saction, therefore, it is attempted to solve 

Eqs. (4.5) and (4.6) for specific boundary conditions, and to find the 

power spectral density Wy(i») which can be related to the radio 

interference field. 

Let us consider a single-conductor line AB of length L subject to 

corona discharges. Let it be terminated in arbitrary impedance# 2̂  and 

Zg at two extremities of the line. The line is assuMd to have 

following characteristics: 

Z : series impedance per unit length, fi/m . 

Y ; shunt admittance per unit length, mhos/m. 

2g * /2/Y ; characteristic iî edance, 0 .  

% » */ZY » * + ; propagation constant 

a : attenuation constant, nepers/m. 

I : phase constant, radian»/». 

Combining Eqs. (4.5) and (4.6), we have 

C. The Solution of Transmission Line Equations 

d'V(x,«)̂ /dx' - I' V(x,»)̂  » Z J(x,»)̂  (4.9) 

If a specific member Ĵ '̂ (̂x,w)̂  of the ensemble J(x,m)̂  is considered 

Eq. (4.9) can be written as*. 

d*v(j)(x,*Xp/dx* ' v(j)(x.wyp - Z j(j)(x,w)T . (4.10) 

For a single source at x » x., J ̂  (x,w)_ is 

(4.11) 
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If w* let 

T nm-N " " " 

then 

« 4(x - Xj) F {f(̂ )(tXp) • d(x - Xj) . (4.12) 

Substituting Eq. (4.12) into Eq. (4.10), we have a second order 

differential equation 

dM"*̂ *.»»)̂ /d*' - *' v(j)(%.*)T • 2 f(j)(w)T 6(% - Xj) . (4 13) 

In order to solve Eq. (4.13), divide the line into region - I, to 

the left of the point Xj » ( and II, to the right of the point ( - and 

apply the source conditions to join the solution for region I with the 

region II. 

Both region 1 and II are then source free The solutions for both 

regions have therefore the form# as follows; 

rx . r* * B e** for 0 1 x < C '(x.£)j » p e*'* + 

Lc e'̂  + 
(4 14) 

De** for ( < % a L 

and 

lU) (x.Oy « R A e ** • B e'* 

L(C e * ' D e**) 

)/2_ for 0 3 % < ( 
" (4.15) 

)/%Q for ( < % a L 

where is the voltage at % when a point source is located at % 
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At the point % * 0, w* h«v« conditions 

Zj - . - Zq (1 + • Pj) (4.16) 

where the symbol 

« A/I • (Zj - Zo)/(Zj • Zg) . (4 17) 

The solution for region I can therefore be written in the form 

v(j)(%,()T • B e'* (1 • pj e"2**) (4.18) 

l(j)(%.()T - 8 e'* (pj e ** - 1)/%* . (4.19) 

In • similar fashion, the conditio* at x * L is 

Zj • » Zg (1 + ' pg) (4.20). 

where. " D ê '̂ /C • (Zj - Zq)/(Z2 + Ẑ ) . (4.21) 

The solution for region II can therefore be written in the form 

v(j)(%.()y • C e ** (1 + ,2 «f*** * (4 22) 

l(j)(%.()T • C e ** (1 • pg ef*(* " t̂ l/Zq . (4 23) 

Now apply the source conditio*# at x » (, i.e., 

l(j)(( + 0,()j ' l(j)(( ' 0.«)̂  » - f̂ ^̂ (*)̂  (4.24) 

v(j)(( + 0,Vj ' v(j)(( - O.SXp ' 0 . (4.25) 

The solutions for the four iniknown constants are, therefore. 
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A - Pj B 

C « - 2, •*" (» + », /* 

D • C pj • 
•21L (4 26) 

wh#r* 

A " 2 (1 . pg «"2*h (4.2?) 

Th« cotistmts substituted into the general foras for the solution 

in region I and II. give the cm̂ lete solution. Thus, fro# Eqs. (4.18), 

(4.19), (4.22), (4 23), and (4.26), the noise voltage at x when a point 

source is located at % » { can be written by: 

ZQ/A f(̂ \w)̂  (I + Pg 

» (e*(* " + P| e"*(* * ()), 0 S X < I 

' ZqM (1 + Pj e'2*() 

» (e'*(* ' () + *2 »*** * ̂ ' 2*)), ( < % * L 

(4.28) 

Equatim (4.28) is the general solution with arbitrary 

terminations and Ẑ . Having obtained the voltage V̂ "̂ (̂x,{;»)Y for 

the problem of single corww source, the problem with a general source 

distribution can be obtained with a superp**iti<m The solution for the 

multiple source can therefore be written as follows: 
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v(j)(x,w)T • % 

- - IJt f(j)(w)T I {• 

*(21. - (4.29) 

It it noted that N in Eq. (4.29) i# the stochastic process 

denoting the ntx̂ r of corona on the transmission line, and f̂ -̂ (̂u)̂  ts 

the Fourier transform of corona current at a given point x. 

The Fourier transform of V̂ '̂ (̂x,t)̂  is therefore the product of 

the Fourier transform of corona current at a given point and the factor 

which can be determined from the distribution of corona along the 

transmission line, the line parameters, «id the terminations of line. 

In the present sectiim, such an enseâ le property as the power 

spectral density which is most important in practical engineering 

applicatims is considered. The power spectral density Wy(x,w) of 

V(%,t) will be used to find the average mean square value of the radio 

interference field caused by V(x,t) in the following section 

The power s|M>ctral density Vy(x,w) of V(x»t) at a given point % is 

defined as 

0. Power Spectral Density of Noise Voltage 

W„(*,») * lim 2/T E(v(j)(%,*)_ * 
* T*. ' 

t (%,*)?) ' (4.30) 

Substituting Eq (4.29) into Eq. (4.30), we get 
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N f * 
* E I I I - 1 ix-x.i) 

n.w-N " 

+ |pj|*«Xp(-*(X+Xjj) - f*(x+%g)) 

+ |pj|»M|>(-r(2L-x-x̂ ) - ï*(2L-x-x̂ )) 

• |pjj»2|»Mp(-ï(2I.-|x-*̂ |) • »*(2L-(x-x̂ |)) 

+ 2 R«t pjMp(-f*Jx-*„f " *(****)) 

• ipj«*p{-I*|x-Xĵ | - f(2L-x-x̂ î) 

+ I»j%2«*p(-**(X-Xjj) • I(2L-x-x̂ )) 

• ̂ĵ 2«*p{-l*|x-xjj| - %(2L-|X'%̂ |)) 

• |Pj|'»2«*p{-t*(*-x̂ ) - »(2I.-|x-x̂ |)) 

+ |p2l'*i**p("**(2L-X"X̂ ) • ;(2L-|x-x̂ j)))j (4.31) 

Not# that tb# t#m in th» bracc is cb# spectral density of f(t), and was 

evaluated in Chapter 3 (see Eq (3 11)) 

The first term in the bracket cm be evaluated in a following way; 

N(W * 
E Ï I exp(-»|x-* I • Ï |%'% I) 
n,#»l " • 

. L L * 
»/• I e*p(-ï|x-x„| ' Ï |x-x.l) 
-# 0 0 n.#»l " " 

* f(%̂ ) f(%2) f(%%) dXj...dXjj dU 

t i * ,11 
» /• f(N) I I cxp(-ï|x-x I - Ï |x-x I) h " 
-• 0 0 n,#»l 

» dxjdx^'•'dxjj) dN 
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, . N * 
• / f(N) {/ .../ I **p(-;|x-x I - Ï |x-% I) dx,...dxu 

0 0 n"l " a I N 

L L « 
.../ % I exp(-*|x"x I - % |x-x I) dx,dx_.. .dx_) dN 
0 0 n,»-l " « 1 2 -N 

n#m 

• /** KM) #xp(-f(x-x I - ;*|x-x I) dx 
.. *• 0 " « n 

 ̂̂1 «xpC-ïfx-x I - 1 |X"X 1) dx dx ) dN 
w 0 0 R» n (R 

" I 5SE (2 ' «"*** " 

" g; (2 " «"*** - ̂ •2ci(L-x)j ̂  X»|̂ (2 - e ** • (4.32) 

Th« ocb«r ccnw in th« bracket can be easily evaluated in a 

similar metbW. The power spectral density of V(x.t) is thus as 

follows: 

ŵ (*.») . Ipi" W,(.) U -

• 2 «.{»,."2"-

•  I l - l p , . • " » )  *  p2(.-2«<'-»> . 
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" 2 e 

ÏJ)t 112 • »'*' . 

* I'll' (.-'«I.-») . 

* I'll' I»-" . .-'(f,),, 

)»p **1(2 (0^,'*' 

* »)%<•"'*" - ."Vu, 
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Let the product of |1/A|* and the expression in the outermost 

bracket be then the power spectral density of 

voltage can be written by 

Wy(x,w) - 2|3q|VB By* E(u(w)|' r(l; x , L , * , .  ( 4 . 3 5 )  

Thus» the spectral density Ŵ (x,w) at a given point x due to corona 

discharges on a single-conductor transmission line of length L is the 

product of the following three factors: 

1. IZql* which can be determined from line parmseters. 

2. which can be determined from the pulse shape, peak 

value, and repetition rate of basic corona streamer 

3. rCXix.L.tt.l.PjiPj) which can determined from the line 

length, the reflection coefficients at the extremities of 

line, the number of corona events per unit length, and the 

propagation constant of the line. 

In a matched line which is an interesting special case, the 

reflection coefficients and both zero, so that the expression 

Vy(x.w) simplifies as follows: 

Wy(x.w) » !M' 7 Itt(w)|' I 4={2 - e'^"* -
V 21 

+ -jip 12 ' e ** • . (4.36) 
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E. Electric Field Calculation 

The malysis. so far, has led to the derivation of the noise 

voltage in the power spectral form. This interference voltage can be 

connected to the electric field intensity around conductor which causes 

the radio interference to the radio placed near the transmission line. 

At the present time» the quasi-static method is widely used to 

determine the electric field from corona voltage. The electric field 

analysis in this section is also based on static electric fields. It 

should be, however, noted that for frequency higher than 10 MHz the 

field intensity mst be determined by an exact solution of the Maxwell's 

equations. 

The crws-sectional vi«# of a single-phase line with ground return 

is shown in Fig. 2, when the conducting earth is replaced by the image 

of the conductor. 

Let the electric field intensities be defined as 

where and Ê  are the field intensities due to conductor and the image 

of coiWuctor, respectively. The electric field intensity E at a point 

F(x,y) is then. 

j» 
E, » e_ e (4.37) 

» (ê x/dj * ê x/d̂ ) + j{ê (y - h)/d̂  + «̂ (y + h)/d̂ ) , (4.38) 
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PhyticAl conductor 

. gXOttfUl 
(0,0) 

loNigo cffitductor 

FIGURE 2. Cr«is*»eecioodl view of a single*pbase line with ground 
return 
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Th« «Itctric fields and art givsn by 

•c " q/(2**odc) 

« -q/(2i«Qdp , (4.39) 

wh#r# q is th« «Itceric chargs dus to corona on th« transmission lins. 

In ths derivation of Eq. (4.39), it was asswmsd that the field 

structure is almost TEN, i.e., the electric and magnetic field vectors 

lie in a plane (xy) perpendicular to the axis (a) of the line. In this 

sense, electric field intensities ê  and ê  are only an approximation 

(usually a reascmable cme for good conductors and for frequencies 

concerned in the R1 analysis). 

The phase voltage V(x,t) aw* the charge are related as 

q » 2«V/ln̂ (2h/R) . (4,40) 

Substituting Eq. (4.40) into (4.48), we have 

» V/U In.(2h/R)) 

ê  » - V/{d̂  ln̂ (2h/B)) (4 41) 

The substitution of Eq. (4.41) into (4.48) yields 

E » V */(l»̂ (2h/R)) d/dç' - l/d̂ ') 

+ jV/l»̂ (2b/R) {(y - b)/d̂ ' - (y + b)/d̂ ') 

(4.42) 
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Equation (4.42) eoiuiacts tha noiaa voltaga on tha conductor to tha 

alactrie fiald intanaity at a point P(%,y). Tha powar spactral danaity 

of E may ba dafinad by 

WL(%,y,*,w) • (W (%,y,%,*)* + W (%,y,*,*)*)*. <4.43) 
X y 

vhara 

W, (*,y,*;*) » Wy(ai,») <x(l/dç* - l/dj»)/ln^(2h/R)î» 

Wg (*,y,s;w) • Vy(a>v) (((y • h)/dg' 

- (y • h)/d^»))/ln^(2h/R)J. (4 44) 

Tha imtrar spactral danaity Wg(*,y,3;*) at ground laval y • 0. 

spatially, is givan by 

Wg(%,yM).%;*) • 4 h» *%(»,*)/((%'+ b')(ln 2h/R))' . (4,45) 

F Radio Interference Field 

In the preceding section, it was shown that the ̂ er spectral 

density of the electric field around transmission line could be 

determined from tha spectral density of interference voltage. 

The electric field intensity in the region immediately adjacent to 

the antenna of a radio receiver induces a voltage in the antenna 

circuit. This is an interference voltage or noise signal. After 

passing through the mixer and the intermediate frequency (i-f) section 

of the receiver, the noise signal is detected, aiiq»lified, and then 
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converted to sound by the speaker. The overall characteristics of the 

mixer and of i-f sections are bandpass in nature, i.e., only small range 

of frequencies from f^ to fy and centered f^ is transmitted without 

appreciable attenuation. 

Let ¥(Jw) be the overall transfer function of the mixer and if 

sections of the receiver. Let W^(x,y,*,*) be the pwer spectral density 

of the output of the receiver. Then, can be written in terms of 

input Wg and the transfer function by (see pp 173-174 of (31) for 

detailed discussion) 

V^(x.y.x,w) » |Y|j(* - Wg)M' Wg(x,y.«,i») (4.46) 

where it is assumed that the receiver is a narrowband filter and the 

input noise signal is broadband, is the frequency to which the 

receiver is tuned. 

For the total average intensity, we have alternatively (by the 

Wiener-Khintchine theor**) 

M^(x,y,«,t) » E (e(%,y.3.tQ) e(%.y,&.tQ -t)) 

• 1/2 F(lif^(x.y,s.»)) 

» 1/2 /• W.(x,y.3,*) e'j** df . (4.47) 
-• * 

Thus, 

M,(x»y.».0) » E(e(%,y,s.t)*) 

« ,i lï(j»')l' V (x.y.z.w + »') df 
0 
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- /" |Y(jw')|' WgCx.y.a.WQ + «') df (4.48) 

mine# Wg » 2» Affiiggp **** bandwidth of the racaivar. 

If tha spaetral danslty of tha noiia signal doas not vary strongly 

with tha fraquaney ovar tha passband of tha raealvar, tha naan squara 

valua of output can ba approxlmatad by 

E(a(x,y,*,t)*) • |Y(Jw')(* Wg(*,y,z,WQ + w') (4.49) 

If it is furthar assumad that tha output nolsa signal is argodic, 

tha man squara valua of output is sna as tha tima avaraga of tha 

squara of any sasbar of output ansaabla a(%,y,a,t), i.a., 

<a(^*(%,y,*,t)'> » E(a(x.y.s.t)') . (4,50) 

Thus, in tha axtansion of tha fmiliar nonstatistical treatment of 

deterministic noise signal in the time and frequency domains, analogous 

relatims in the case of the ensenAle and its representative members can 

be now constructed. Thus, if the output noise signal is argodic. the 

time average of the square of the noise measurement represents the mean 

square value of output noise. 
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V. RADIO INTERFERENCE IN THREE PHASE TRANSMISSION LINES 

A. tntr«Mluction 

Th# analysis of RI on short nulticonductor lint involves two 

important «Ismnts: firstly, # modal propagation analysis of RI and 

secondly an analysis of the short line effects, taking into account the 

effect of the terminating impedances. 

In the case of short lines, the propagation analysis is 

complicated by the reflection of the voltage and current waves which 

might be produced at the two ends of line, depending on the iaqtedance 

networks terminating two ends. In the general case, such reflection may 

result in the mixture of the different modes or intermode coupling, 

which will make the RI propagation analysis extremely difficult. There 

exist certain types of line terminations, however, which either 

completely eliminate or reduce to a negligible level, any intermode 

coupling. 

In this decoupled three phase transmissicm line, most of the RI 

analysis developed for the single-conductor line can be directly 

applicable in the three phase RI analysis. Thus, in this chapter only 

decoupled line will be considered in order to avoid unnecessary 

complexity in the RI analysis and to make the RI analysis more clear. 
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B. Transmission Lin# Equations 

For any thras phas# transmission linas, tha phasa currants and 

lina to ground voltagas ara ralatad at any point on tha Una by tha 

transmission lina aquations. In tima-spaca domain, thasa aquations can 

ba obtained by using tha sMa method for the single conductor line, and 

they are as follows: 

- avP/a* " R I + L aiP/at cs.i) 

- » C avP/*t + J** (S.2) 

where 

s ; the axis of transmissixm line. 

: 3x1 coltMn vector. denote the line to ground voltages in 

phase i. 

: 3x1 eoluam vector. denote the phase currents in phase i. 

R : 3x3 square matrix. R^^ denote the frequency dependent 

resistances between the ith conductor and jth conductor 

including the Carson's return. 

h ; 3x3 square matrix. denote the frequency dependent 

self (i » j) and mutual (i * J) inductances of the line 

including the earth effect 

C : 3x3 square matrix, denote the self and mutual capacitances 

of the line including the earth effect. 

: 3x1 colium vector. J. denote the corona currents 

injected into phase i. 
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In the derivation of Eqs. (5.1) and (5.2), the conductance of the 

line waa neglected. It ia worthwhile to note that in many physical 

three phase transmission lines, earth or gro%md wires are added above 

the phase conductors. In this connection, Eqs. (5.1) and (5.2) must be 

considered as the transmission line equations after taking into account 

earth wire effects 

Let us consider next an enaemble which is obtained from the 

ensemble J(*,t), 0 S a Jl L, -« < t < •, with E{J^(x,t)') « • for every 

finite interval (t) and for i » 1,2, and 3, so that vanishes 

everywhere outside (•T/2,T/2). Then, Eqs. (5.1) and (5.2) can be 

written as follows; 

• »¥»*(»,t)^/ï* - R !*'(».t)^ • L II**(s,t)^ (5.3) 

- »I**(s.t).y/ls » C *vP(z.tip/at + J**(z.t)^ , (5.4) 

where and are the voltage and current when the corcma events are 

considered only in 'T/2 S t 1 T/2. If it is assumed that each ecn^sonent 

of Vy, and is absolutely integrable w.r.c. t, then there exist 

the Fourier transforms of V^. and 1^ componentwise. It is noted 

that the Fourier transform: of matrices or vectors are defined 

comqionentwise as follows: 

F{V) * lF{Vj^)| . (5.5) 

Taking the Fourier transforms on both sides of Eqs. (5.3) and 

(5,4), we have 
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- 8VP(»,*»y8« - 2 (5.6) 

- Il**(».i»yi« - Y vP(%,*)T + JP(*,*)T, (5.7) 

where, 

2 " R + jwL (5.8) 

Y " jwC (5.9) 

%(*,*) - F{X(a.t)), for - 1^**, or (5.10) 

Cmbininf Eqs. (5.6) mod (5.7). 

a*vP(*.w)y/a#' - P vP(*.w)y • 2 jP(z,*)T . (5.11) 

wh#r# 

P » 2Y . (5.12) 

Equation (5.11) or Eq# (5.6) and (5.7) are the basic transmission 

line equations to determine the noise voltage caused by corona 

discharge*. In the following secticm, the nodal method will be 

introduced to decouple the transmission line equations. 

C Modal Analysis 

For multiphase transmission line analysis, the use of symmetrical 

cos^wnents is appropriate most of the time. Although symmetrical 

cosqxments are widely used in power system analysis, they are of 
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impractical t»« in this problta. At these high frequencies, the 

asyoMtry of the line cannot be neglected. Therefore, the general 

eigenvalue or modal analysis is adequate for this purpose through the 

use of the similarity transformations. Using this technique, a lossy 

line consisting of n conductors has n eigenvalues or iMdes of 

propagation. Each of these awdes consists of particular voltage and 

current composition, velocity and attenuation at a given frequency. 

The main advmtage of this modal method is the use of a 

transformation method which, when applied to the coupled systems, will 

decouple them. For this specific study, phase qumtities are ̂ ing to 

be transformed into modal quantities. 

Let S and Q be the voltage and current transformation matrix, 

respectively, i.e.. 

where V and I are the comptent vectors. 

Itenoting 0' by the diagmial matrix whose diagonal elements are 

d'/d»', Bq. (5.11) is written as 

V* * S V (S 13) 

I* » Q I (5.14) 

(0' - P) » 2 JyP (5 15) 

or 

(D* - P) S 5'^ » % Q . 

Preflwltiplyiog S ̂  on both sides of Eq. (5.16), 

(5.16) 
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S'^ (D» • P) S s"* " s"* 2 Q Q'^ . (5.17) 

Usins Eqs. (5.13) and (5.14), 

s"* (D* . P) S Vp " S"1 2 Q Jp (5.18) 

Thus, 

(D* . s"* P S) Vy " S"l 2 Q Jp . (5.19) 

L#t 8 b# th« nodal Mtrix of P, i.e.. th# column# of 8 «r* ch« 

#i*eav#eto*# of P, and lat X' b# tha dia^mal matrix who## aUmant# ara 

tha aiganvaluas of P. Than. Eq. (5.19) bacoma# 

(d* • \») # s"* 2 q jp . (5.20) 

If 

S'̂  • Q' , (5.21) 

S"*2Q i# a diagonal matrix (38). Tharafora. both »ida» of Eq. (5.20) 

yield component values which are mutually independent. This is the 

result needed to simplify tha solution of the matrix equations. 

D. Solution of Transmission Line Equations 

The next step in the Rl analysis of three phase transmission 

systems is to solve Eq (5.20). In this section, a transmission line 

terminated at both ends in networks producing no or negligible coupling 

will be considered in order to avoid extreme difficulties in the Rl 
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analysis. It can b« shcwm (17) that th* following terminal impadanc# 

matrix 

2 - S 2® Q'^ (5.22) 

produce# no coupling. In Cq. (5.22), 2^ is the Rwdal characteristic 

impedance matrix defined by {38): 

2® • ï"* s"* 2 Q . (5.23) 

Fxom a practical point of view, it could be extremely difficult to 

terminate a hi|^ voltage transmission line in an impedance network 

defined by Eq. (5.22). A more feasible alternative is an impedance 

network comprising tmly of identical impedances between each conductor 

and ground (17). In this case, there is negligible coupling for 

practical trmsmission line eonftitrations. 

Consider a short three phase transmission line of length L 

terminated in equal ii^edances between each etmduetor and ground for 

each end. If. en this line, it is assumed that only cimductor I (phase 

a) is subject to corona discharge, then, 

Jj • Q'ljPyr » S'jPyr 

* (5.24) 

Then, the basic transmission line equation can be written as 

(D' - *') = S'* 2 Q SjaAf (5 25) 

Define 
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G • s"* 2 Q (5.26) 

then, Eq. (5.25) can b# reduced to 

(D' • >*) • ItjjSjj, <22̂ 12* *33̂ 13) (527) 

or, 

d'Vjy/d,' -  ̂ " 1.2.3 (5.28) 

It !• ihotm that tb« matrix Z*^ connect# component currents and 

voltages as follows |3S): 

V » V* e ** - V" e* 

• 2® ( I* e ** • r e'* ) • 2® I . (5.29) 

Because of the absence of any Intermode coupling, the propagation 

of each mode i may be analyzed as a single conductor line having a 

characteristic im^wdance 2®^, the propagation cw*stant and terminal 

i#edances 2^ and 2g. 

Tims» comparing Bqs (5.28) and (4 9), the comptent voltage due 

to corcma discharges <m conductor 1 only is 

r n  c  ( i t  N  I  - f , ( z + g  )  
•- ̂u/*i »U J, • 

-ï,(2W-s) '1AZi*'Ï9'zjy 

•'.i* >• 

where 

'*i • "A - * ̂ U) 



www.manaraa.com

60 

••il • (S • + zîi) 

-2Ï.L 
A* " 2 (1 . pg^ # ^ ). (5.31) 

and Zg #r# tha impadmcas b*tw#*n «ach conductor and ground at tha 

two anda of Una AB< 

In tha aimilar way, tha component voltagaa dua to corona 

diachargaa on conductor# 2 and 3 (pha### b and c) can ba obtained. The 

component voltage# cauaad by corona diachargaa, therefore, will be given 

by 

for 1 • 1. 2, 3 (5.32) 

where, ̂ 4(^*0*44>1*11i# defined by the expression in the brace of Eq. 

(5.30). 

e. Power Spectra) Voltage of Component Voltage 

The power spectral density of the ith component voltage at a given 

point z is evaluated as fol lows ̂ 

Wy(«.w)^ • lim 2/T U v(j)(z,*)y V^^ (».«)* ) 

3 

» li» 2/T El Z ^i^' 

3 

• I F%P li# 2/T El I f(j)(*)T I *  

3 
= I'7® = |Z% /A I* IF,I' li* 2/T E{ I I S., S., 

XI i X k,i=i " 
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• j 'i, 'ki Ki 

. |2>,C 177 t S 8,; W,<.)„. 

(5.33) 

wh#r#, 

- 2/i^ . (5.34) 

|F^|' i# Cb« SMM M tb« MprMsim in th« outenmst »qu@r# 

bracket of Eq. (4 33), if *, and Pg are replaced by 1^. and 

Pg^, respectively. 

It is noted that, in the derivation of Cq. (5.33), it wa* aeswsed 

that the mean number of corona events is the same in each conductor. 

F. Electric field Intensity Calculation 

The analysis, so far, has led to the derivation of the compmxent 

noise voltage in the power spectral for#. An expression will be derived 

for the electric field intensity which cause radio interference to the 

radio placed near transmission line. 

For a system of three parallel conductors, the phase voltages and 

the phase charges are related as {17) 
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qP - 2W yP (5.35) 

wh#r#, B is th« Maxwell'# coefficient of capacitance matrix. 

Introducing the component voltage given Eq. (5.13), 

qP - 2i»C B"* V** (5.36) 

where, A • b"* S. 

Potential function at any point P(x,y,*) due to a line charge 

is given hf 

where, 

"̂ ii " ' li»' * + y)» 

**ci " (* " Ij)* * ' y)'» 

and 1| h^ are the x and y coordinates of c<mductor i. and the x^y 

plane is perpendicular to the axis (s) of the line. 

Thus, the total potential at P(x.y.s) is 

l»l * 

• I ;PV(4,tQ) l*(dii/dgi) 

3 3 
» 1/2 I I A.. V. ln(d,.M .) 

3 3 
» I (V 1/2 I A.,ln(d../d^,) ) . 
j»l J ** 
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Th« electrical field intensity at P(x,y,%) is the gradient of the 

potential function Therefore, it can be calculated as follows: 

E(x,y,*,t) • H^/9x i + l#^/8y j 

the X and y cw^xmenta of E. 

Eq. (5.37) cmmects the noise voltages on the conductors to the 

electric field intensities at a point P(x,y,z), It is noted that in 

the derivation of Eq. (5.37), the electric field vectors are assimed to 

lie in the plane (xy) perpendicular to the axis of the line (s). 

The power spectral density of E may be defined by 

Wg(%,y,z,*) # (W^^(%,y,z,w)^ • W^*(%,y.*,M)y)* (5,38) 

where, W and W are the power spectral densities of e and e , #y % y 

respectively. and are given by: 

» l-êh^y(x-l^) i 4 4hj((x-l^)' • h^») J) 

" 'x 1 + 'y j' (5.37) 

where, i and j are the unit vector of x and y coordinates, e^ and e^ are 

3 3 
Wg(%,y,z,w)* * I Wy(s,«)jj| I Ajjj4ĥ y (x-l̂ )/(d̂ d̂ç̂ )|' 

n»l 
3 

i»l 
3 

The power spectral density at ground level Is given by 

3 3 
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Th# man squara valu# of tha output fiald of tha racaivar placed 

naar tranamlsslon llnaa can ba evaluated In the saow way described in 

Section 4.E, and It can be written as follows: 

<#*^)(*,y,*,t)*> - e(%,y,z,t)* 

• Wg(%,y,Bandwidth . 
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VI. DETERMINATION OF RANDOM PARAMETERS FROM THE EMPIRICAL RI 

MEASUREMENT 

A. Introduction 

To #v#luat# RI I#v#I with th# stochastic RI analysis dsvslopsd in 

the prscsdin# chaptsrs, random paraaatars such as the rapctition rata, 

paak «splitude, and shapa of corona puisas, and tha naan numhar of 

corona ganarations par unit length along trananission lina must ba 

datarninad. 

Thasa paraawtars ara random in nature, and depend on a number of 

deterministic and statistical factors. Thus, in order to validate the 

theoretical RI analysis, it appears necessary that the random parameters 

mst be determined by experiments taking into accotmt every possible 

deterministic and statistical factor itowever, it would be very 

infractical to determine the random parameters for every possible state 

by experiments because some statistical factors are very hard to 

estimate and it is practically imfwssible to measure the state of the 

conductor surface. 

Because of the need for higher transmission voltages a 

considerable amount of RI measurement* have been made on short full-

scale single- and three-phase test lines as well as on operating lines, 

complemented by laboratory investigation on eor<ma discharge 

characteristics in the past 15 to 20 years {13,26). Thus, it appears 

reasonable to utilize these cmwiderable mounts of RI measurements. 
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inmtead of a naw sat of axparinants, to dataroina analytically tha 

random paraoMtars ganaratad in tha stochastic RI analysis if possible. 

It has baan found that tha most raproducibla Rt tast data ara 

obtained under heavy rain conditions. An empirical law to determine 

corona generation in the heavy rain has been established, based on the 

naasuraments on a large variety of line configurations f2|. 

Therefore, the new set of experiments to validate the developed 

stochastic Rl analysis may not be needed if tha random parameters can be 

satisfactorily determined from corona generation or other empirical 

data. 

In this analysis, it will be attempted to determine random 

parameters from the generation function. 

B. Generation Function 

The basic relationship between corona current and the generation 

function was originally established by G E. Adam# (16). However, a 

simpler and perhaps more intuitive approach was presented C. H. Gary 

IIS). The RMS value of the injected high frequency corona current, 

measured at frequency and with Af Hs bandwidth, per unit length of 

conductor is given by (2,18,19) 

I » C r/(2,:o) (6.1) 

where C is the capacitance per unit length between the conductor and the 

ground. 
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Gary's work «xtcndad to nultlphsss transmission lines. Tha 

aquation proves to be valid, put in general matrix form: 

HI - (C) ir i /(2fCQ) .  iiA/m* .  (6.2) 

It is, therefore, the generation function which must be considered 

as the really specific measure of the cause of interference. F is 

I 
expressed in wA per m'. 

It should be noted that the magnitude that can be measured is the 

current I and not the generation function. In a general case, F 

represents an intermediary parameter in the calculation of the RI and 

has to be derived from experimental measurements of corona currents and 

the capacitance of the system. 

As was previously stated, the mcMit reproducible test data are 

obtained from heavy rain. Besides, heavy rain RI data have a practical 

significance, since generally RI levels are highest when the rain is 

heaviest {2], An en^lrlcal law. based on the results of a large number 

of cage and line tests, has been established In (2) as follows: 

» 85 • 5«0/g * 3# log d/3.8 (6,3) 

where, 

Fgg : the heavy rain generation function In dB above wA/m^. 

g : the maximum gradient in . 

d ; the diameter of conductor in cm 
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It should bo noted that the heavy rain generation function in Eq. 

(6.3) is the quasi-peak value measured at 1.0 HHs and with 5 kHs 

bandwidth. 

A joint lEEE/CIGRE Survey {13} has compared the average fair 

weather RI level with the heavy rain R1 level for operating lines 

ranging from 220 kv to 765 kv. From these data and the limited fair 

weather data, an average value of 22 dB difference in generation between 

heavy rain and average fair weather is suggested (2,13}. 

C. Determination of Random Parameters From Generation Functions 

The spectral density Wj(w) of the injected corona current due to 

single corona discharge has been derived in section 3.C. and is given by 

Since the mean number of corona events per unit length is %, the 

spectral density per unit length *(w) will be given by 

If the injected corona current is measured with RMS detector 

having Af bandwidth, the awan square value of corona current will be 

Wj(w) » 2/1 E(y') E{|u(w)|») . (3 11) 

•(») » X HjM . (6 4) 

B{l(t)») » *(#) Af (6.5) 

If it is assumed that the current signal of the detector is 

ergfldic, the time average of any member of output ensemble I(t) can be 

obtained as follows; 
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.  ( 6 .6 )  

Thmrefore, the averafe Injected corona can be given by 

<l(j)(x,y,z,t)> » (*(M) AO* . (6.7) 

From the preceding aection, the RMS value of the injected corona 

current, neasured at frequency and with Af Ha bandwidth, per unit 

length of conductor is given by 

I • C r/(2iifQ) . (6.1) 

Equating Eqs. (6.7) and (6 1), random parameter E(y') can be 

obtained, and is given by 

E(y') • (C r/(2iiejj))' t/{2 Af |u(«i)f' X) (6.8) 

where, B • 1/60, and Af is the bandwidth of the detector. 

In order to make the analysis more clear, ccmsider matched line, 

in which the power spectral density of noise voltage is given by Eq 

(4 36). i.e., 

W»(%.*) » Ifgl' X'p |u(w)l' 1^(2 - e'^®*- e'2o(W)j 
* 21 

* . I';. 

Substitution of Eq. (6,8) into the above equation yields 

W»(%.w) = (4^)' i- (2 - e'^®*- ^•2tt{W)j 
441 ^ 

+ tiyslZ" e ** e'%(L'%)|,| (6.9) 

As L gjoes to infinity, Eq. (6.9) becomes 
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Therefor#, the RMS interference voltage will be 

»<"•-> • -i;!- :o (= + fîT»'-

In the RI analyai# using a generation function, the RMS 

interference voltage is given by (see page 164 of {2)) 

Tspr'o • 

Fro# the above analysis, it is shown that the interference voltage 

depends on the niMAer of corona events in the stochastic RI analysis, 

but does not in the generation function RI analysis. 

The detailed analysis on E|u(w)|* will bo followed in the next 

section. 

D. Determination of the Mean Square Spectrum of Corona Pulse 

The shapo of the positive pulse in the high voltage transmission 

lines can be represented by the following double exp<mential form 

135.361; 

i(t) » A (e"** - e'**) . (6.10) 

A little simpler expression, which is the special case of Eq. (6.10), 

was developed empirically by Perei'man and Chernobrodov (37), and is 

given by 
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i(t) » A â t (6 11) 

A statistical study was mada of tha paraaatars of streamar puisas 

on twistad conductors 17 to 33 an in diamatar in (39). Invastigatad 

wara tha shapes of tha straamar puisas, tha high fraquancy currant 

ganaratad by ona source of corona, and the variation of the h.f. noise 

current as a function of the pulse of the supply voltage. It was 

confirmed in (39) that the corona pulse shape was well approximated by 

equation (6.11). 

It was found that the build-time of pulses increased with 

increasing diameter of the conductor. The following relationship was 

obtained between the coefficient a and the conductor diameter (in the 

investigated range of diameters fro# 17 to 33 mm): 

where, d is the conductor diameter in mm. 

The impulse amplitude, the variation of the maxiimtm field strength 

on the surface of the conductor in the interval from 2S to 34 kv/cm and 

the presence of an adjacent conductor at a distance of 0.1 to 0.15 m 

from the corona conductor had no important effect on the shape and width 

of eottma pulse» (39), 

Equation (6.11) will be used for the evaluation of E|u(w)|* in 

this section for 8iji^»licity. Since u(t) has unit peak value. u(t) is 

given by 

a • lOV(2.5d * 28) , 1/sec (6.12) 

U(t) . . t ."•«> (6.13) 
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Taking th« Fourier transform on th« both sides of Eq. (6.13), we have 

|u(ii)| " a e/(a' + u') (6.14) 

At this point, random variable a is assumed to be uniformly 

distributed so that the density function of a is given by 

f^(a) « p/(q - p) for p S a S q 

L 0 otherwise. (6.15) 

The expectation of |u(u)|' can be easily evaluated and the result is 

given by: 

E. Summary and Conclusions 

Most parameters generated in the stochastic R1 analysis such a# 

the repetition rate, peak m^litude, and the shape of corona pulses, and 

the mean niM^r of corona event» are shown to be determined from the 

existing R1 data. Among these random parameters, the repetition rate 

and the shape of corona pulses are assumed to be deterministic. The 

peak ao^litude of corona pulses is shown to depend on the generation 

function, the mean number of corona events, and the mean square spectrum 

of basic corona pulse with unit peak a«q>litude. The mean square 

spectrum of basic pulse is determined from the deterministic pulse 

shape. 
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Ftoa th« analysis in Section 6.C, the following may be concluded: 

1. In the generation functicm RI analysis, interference 

voltage is independent of the nusAer of corona events per 

unit length. 

2. In the stochastic RI analysis, interference voltage is 

dependent of the ntmber of corona events. 

3. The RI value obtained by the stochastic Mthod will be 

close to the RI value obtained by the generation function 

method if X is close to sero. 

4. From Eq. (6.8), as \ goes to zero, however, E(y') goes to 

infinity, which is not pwsible in practice. Therefore, 

one way to determine \ is to know the mean value of peak 

amplitude of corona pulse, of which theoretical |35) and 

experimental |36,37,40,41] data exist, and use Eq. (6.8). 
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Vil. NUMERICAL CALCULATIONS AND DISCUSSIONS 

A. Introduction 

In order to d*mon#trat# practical applications of n#wly d#v#lop«d 

stochastic RI analysis, th« radio int#rf#r#nc# levels represented by the 

electric field intensity at the output of the if stage of the radio 

receiver will be calculated for a high voltage three phase transmission 

line. 

Line impedances are derived taking into account the conductor 

geometry, conductor internal impedances, and earth return path. Since 

the method to obtain line is^iedances is presented well in |42]. only the 

results are shown in the Fortran program. 

A computer program has been developed to calculate RI levels for 

comparative studies, and is shown in Appendix II, 

B. Base Case Line Characteristics 

A single-circuit horizmital line shown in Figure 3 is considered 

in this chapter. The maximum system voltage is 362 kv. The basic 

geometry is chosen as average values presently used for EHV transmission 

lines (2) The average conductor height is used for the purpose of 

corona performance calculations and represents the height of a perfectly 

horiz^tal line which yields the same performance as an actual line. 

The average height is equal to the mid-span height plu» one third of the 

sag. 



www.manaraa.com

75 

0.2275 ** 

4—±—^ 
*•«.7, -* » 4,. -*r 

9.7 m 

r 
e 

7.5 m 

12.5 m 

7.5 # 

0.881 " 

L_ 
(0.0) 

Fl^fBE 3. Single'Circuit Horizontal Line Configuration, 345 Itv 
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Th# following constants arc assimad in tha calculations: 

Conductor 

Shield wir# 

Dianatar of conductor 

Diameter of shield wire 

Impedance of shield wire 

Conductor resistivity 

Shield wire resistivity 

Earth resistivity 

Relative permeability of shield wire 

Relative permeability of conductor 

64/19 A1 / St 

Bluebird 

7/16" St 

1.762 in 

0.455 in 

4.97 + J1.58 at 60 H* 

3.21x10"* S.m 

20xl0'® a.m 

100 Q.m 

1000 

1 

C. Random Parameters 

Since the most reproducible R1 test data are obtained under heavy 

rain, the generation function represented Eq (6,3) is used to obtain 

random parameters. 

The mean square peak-amplitude ̂  is given by Eq. (6,8), i.e., 

y* = (cr/2,e.)*B/(2 Af |u(*)|* X) (6,8) 

Since 

7 » (y • y)* + i f ) '  » var(y) + (y)' , (7,1) 

y can be written by 
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y - Cr/(2«Q) À/{2 A£ X (1 + pc')), (7.2) 

where, var(y) • pc)*. (7.3) 

It should be noted that represented by Eq. (6.7) is an RMS 

value. It is an American (ANSI) Standard (43,44) to use a quasi-peak 

detector for the measurement of radio interference field from overhead 

power lines. Generation functions are also usually represented by quasi-

peak value. Thus. must be converted to a quasi-peak value. It is 

assumed that a quasi-peak value is the smse as an RMS value tioMS /2 

because peak value is close to quasi-peak value (11,12). Then, when the 

generation function is expressed in the quasi-peak value, the peak 

amplitude of the pulse is given by 

y • Cr/(2Wg)i^/(4Af (tt(ii)IH d+pc'). (7,4) 

The bandwidth of radio noise meter is assiwed to be 5 KHz. The 

inverse of build-time (a) is assuMd to have a uniform distribution 

denoted by Eq (6,15). |u(w)|' is then given by Eq. (6.16), 

X can b# approximately determined if the approximated peak 

amplitude of corooa current pulse is known. The amplitude# of positive 

streamers are assumed to be in the range from 50 to 200 milliampcre#. 

IMknown parameters pc, p. q are assumed as follows: 

pc » .75 

p = ,5 3 

q » 2 â 

where, Ï is given by Eq (6,12), 
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D. Calculated Results 

Ths radio intsrfsrsncs fields were calculated for various cases to 

cxmpare the effects of different factors on the Rl levels. These 

factors are: 

1. Terminating impedances of the line; 

2. Hem number of corona events along the line; 

3. Frequency (0.1 - 10 HHs); 

4. Line length; and 

5. Design parameters such as conductor diameter, system 

voltage, conductor height, and the phase spacings. 

1 Iffect of t^ terminating impedances of t^ line 

Table 1 shows the radio interference levels for different line 

terminaticms. Four termination* are considered for two different line 

lengths. 

For a relatively Icmg line, there is no significant difference in 

the Rl level for different terminâticms. This fact is reascmable 

because the reflective waves from terminations are attenuated to 

negligible values. However, the RJ field for the line of length 10 m 

open-circuited at «me end and terminated with a wwpled capacitor 4000 

pF at the other end is cmxsiderably different from the Rl fields for the 

other eases. 

Therefore, it is suggested that a care be given in the analysis of 

Rl field data obtained in the short test line and in the extension of 

those data to the actual long line. 
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TABLE 1. The Effect of Lin# Terminâtion* on the R1 Field 

and 2g are the termination impedance* of line AB from each conductor 

and ground. L denote* the total length of line. R1 field i* the quasi-
peak value calculated at IHKs and 51%% bandwidth. The mean number of 
corona events per meter is asstmnd to be 1. Terminal impedance 
"j39.79 represents a coupled capacitor 4000 pF. 

Terminal Impedances Rl Field (dB above itv/m) 
:&(*) 2,(9) L » 10 m L « 1600 m 

10*' 10*' 82.860 82.860 

10*' •j39.79 69.290 83.162 

0.0 0.0 82.285 81.028 

-J39.79 -J39.79 82.285 82.530 

matched matched 82 285 82.530 

2. Effect of t]^ mean number of corona events 

To determine the approximated value of % and the effect of X on 

the RI field, the Rl fields for different values of \ were calculated 

for the constant generatiim functiw* given Eq (6 3), X is the 

random parameter making the stochastic Rl analysis distinct from other 

RI analyses. It is noted that in most of cases, corona generations are 

assumed to be uniform along the line. 

Figure 4 and Tables Z and 3 show the corona currents of center md 

outer phases. The RI fields were calculated for the lateral distance of 

15 m from the outer wwductor. 
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TABLE 3. Th« Effect of X on th« RI fimld «ml Coron« Currtnt, Cas* 2 

X danotas tha maan nuaAar of corona avants along tha Una par «atar. 
Tha Una is opan circuited at both ands (casa 2). 
Tha RI field is tha quasi-paak valtia calculatad at 1 NMz with 5 KHz 
bandwidth. Tha total length of line is 10 m. 

Lmda Current of Current of RI 
Center Phase Outer Phase Field 

0 lOOD-03 0.1870 02 0.1380 02 0.1380 02 0.6660 02 
0.158D-03 0.1480 02 0.1100 02 0.1100 02 0.6660 02 
0.2S10-03 0.1180 02 0.8740 01 0.8740 01 0.6660 02 
0.3980-03 0.9400 01 0.6940 01 0.6940 01 0.6660 02 
0.6300-03 0.7460 01 0.5510 01 0.5510 01 0.6660 02 
O.lOOD-02 0.5930 01 0.4380 01 0.4380 01 0.6660 02 
0.158D-02 0.4710 01 0.3480 01 0.3480 01 0.6660 02 
0.2510-02 0.3740 01 0.2760 01 0.2760 01 0.6660 02 
0.3980-02 0.2970 01 0.2190 01 0.2190 01 0.6660 02 
0.6300-02 0.2360 01 0.1740 01 0.1740 01 0.6660 02 
0.1000-01 0.1870 01 0.1380 01 0.1380 01 0.6660 02 
0.1580-01 0.1480 01 0.1100 01 0.1100 01 0.6660 02 
0.2510-01 0.1180 01 0.8740 00 0.8740 00 0.6670 02 
0.3980-01 0.9400 00 0.6940 00 0.6940 00 0.6670 02 
0 6300-01 0.7460 00 0.5510 00 0.5510 00 0.6680 02 
0.1000 00 0.5930 00 0.4380 00 0.4380 00 

1
 

o
 02 

0.1580 00 0.4710 00 0.3480 00 0.3480 00 0.6710 02 
0.2510 00 0.3740 00 0.2760 00 0.2760 00 0.6740 02 
0.3980 00 0.2970 00 0.2190 00 0.2190 00 0.6780 02 
0.6300 00 0 2360 00 0.1740 00 0.1740 00 0.6840 02 
0.1000 01 0.1870 00 0.1380 OO 0.1380 00 0.6920 02 
0.1580 01 0.1480 00 0.1100 00 0.1100 00 0.7030 02 
0.2510 01 0.1180 00 0.8740-01 0.8740 •01 0.7150 02 
0.3980 01 0.9400-01 0.6940-01 0.6940-01 0.7300 02 
0.6300 01 0 7460-01 0.5510-01 0.5510-01 0.7460 02 
0.1000 02 0.5930-01 0.4380-01 0.4380-01 0.7630 02 
0.1580 02 0.4710-01 0.3480-01 0. #80-01 0.7820 02 
0.2510 02 0 3740-01 0.2760-01 0.2760-01 0.8000 02 
0.3980 02 0.2970-01 0.2190-01 0 2190-01 0.8200 02 
0.6300 02 0.2360-01 0.1740-01 0.1740-01 0.8390 02 
0.1000 03 0.1870-01 0.1380-01 0.1380-01 0.8590 02 
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For remaooabl# ranges of puis# amplitude from SO to 200 

mlllio^res, X ranges from about 1 to 16. The Rl fields for X less 

than I straw a nearly ctmstant value of about 79.S dB above vv/m, which 

is close to some of the measured or calculated RI fields by various 

methods tabulated in Table 4 (for detailed methods and empirical 

formulas, see (2)). However, it should be noted that the RI fields 

calculated by the stochastic model are based on the RI data established 

in the Project UMV. 

TABLE 4. The RI fields by Different fWthods during Foul-Weather 

The RI Fields are the quasi-peak value measured at the lateral distance 
of 15 m from the outer conductor at 1 HHs with 5 RHa bamfwidth. 

RI Analysis Method RI Field (dB above w/m) 

Project UHV Base case (USA) 78.5 

400-kv-FG (Germany) 78.3 

Ontario %dro (Canada) 75.3 

ENEL (Italy) 71.7 

E0f (Caechw lovakia) 63.2 

From Figure 4, it is observed that the Rl values for X greater 

than 1 are significantly different from those obtained by the 

conventional RI analysis methods. Therefore, tmce again, it is shown 

that the uniform distributicm of corwa generation is unpractical. 
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Thus, it oust b« taphasiatd that th* Masurtd R1 field# will pretty touch 

d«p«nd on th# m«h#f of corona «vanta along the line during foul-weather 

conditions. However, there #ay be not much difference between the 

stochastic and conventional methods during fair-weather conditions 

because the ntnber of corona events Is much smaller during fair-weather 

than during foul-weather. 

3. RI frequency spectrum 

The frequency spectrum# were calculated over the range from 0.1 to 

10 HKs #t the center of the open ended line at both end#. In order to 

#ee the effects of line length and the nwAer of corona events <m the Rl 

spectrum, the R] fields were calculated for three cases of line length, 

and for two values of X at each frequency from 0.1 to 10 MNa. 

Calculated RI fields are shown in Figures 5 and 6, and Tables S and 6. 

Frc# equation (4.33), which is the formula to obtain the power 

spectral density of noise voltage, it can be easily noticed that the 

shape of Rl spectnm fields is the function of line length, observation 

position, propagatiim constant, the mean mmdber of corona events, and 

the shape of basic corona current pulse. The shape of corona current 

pulse decides the general trends of Rl spectnm along frequency. The RI 

field, for exM^le, decreases as 20 log(l/f*) with frequency of greater 

than about 2 NHs 113,24,26,35.36.37). It is observed that the RI field 

decreases about 28 dB with frequency increases from 0.1 to I tOte. and 44 

dB with frequency increases from 1 to 10 HUst. The 44 dB decrease with 

frequency increases from I to 10 M&g agrees with most published results. 
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TABLE 5. RI Field Spectn» for Different Line Length» X * 1 

The line i# open-circuited #t both ends. L denotes total line length. 
The RI field is the quasi«pe#k value calculated at the lateral distance 
of IS n fro» the outer phase conductor with SKHx bandwidth. 

Frequency (fOix) L • 10 b L • 1600 n L <• 16000 n 

O.IOOOOD 06 
0.1047ID 06 
0.1096SD 06 
0.1U82D 06 
0.12023D 06 
0.12589D 06 
0.13183D 06 
0.138040 06 
0.14454D 06 
0.15136D 06 
0.15849D 06 
0.165960 06 
0.173780 06 
0 181970 06 
0.190550 06 
0.199530 06 
0.208930 06 
0 218780 06 
0.229090 06 
0.239880 06 
0.251190 06 
0 263030 06 
0.275420 06 
0.288400 06 
0.302000 06 
0.316230 06 
0 331130 06 
0.346740 06 
0.363080 06 
0.380190 06 
0.398110 06 
0 416870 06 
0.436520 06 
0.457090 06 
0.478630 06 
0.501190 06 
0.524810 06 

0.111630 03 
0.111160 03 
0.110680 03 
0.110210 03 
0.109730 03 
0.109250 03 
0 108770 03 
0.108290 03 
0.107810 03 
0.107320 03 
0.106830 03 
0.106340 03 
0.105850 03 
0.105350 03 
0.104850 03 
0.104350 03 
0 103840 03 
0.103330 03 
0.102820 03 
0.102300 03 
0.101770 03 
0.101240 03 
0.100710 03 
0.100170 03 
0.996180 02 
0.990650 02 
0.985060 02 
0.979400 02 
0 973680 02 
0.967880 02 
0 962030 02 
0 956130 02 
0.950150 02 
0.944100 02 
0 937980 02 
0.931780 02 
0.925490 02 

0.114140 03 
0.111910 03 
0.110020 03 
0.108440 03 
0.107240 03 
0.106540 03 
0.106480 03 
0.107140 03 
0.108530 03 
0.110730 03 
0.113980 03 
0.118410 03 
0.117770 03 
0.112050 03 
0.107590 03 
0.104280 03 
0.102220 03 
0.101740 03 
0.102890 03 
0.105520 03 
0.110150 03 
0.107670 03 
0.102190 03 
0.993130 02 
0.969760 02 
0.949550 02 
0.934760 02 
0.929200 02 
0.926030 02 
0.935690 02 
0.953180 02 
0.986160 02 
0.101550 03 
0.960580 02 
0.935830 02 
0.978430 02 
0.101290 03 

0.10376D 03 
0.10S44D 03 
0.108490 03 
0.108850 03 
0.108970 03 
0.106940 03 
0.101540 03 
0.100620 03 
0.106160 03 
0.107300 03 
0.103560 03 
0.100410 03 
0.100260 03 
0.101770 03 
0.103220 03 
0,100430 03 
0.989750 02 
0.101930 03 
0.101240 03 
0.983150 02 
0.989000 02 
0.991760 02 
0.97156D 02 
0 989440 02 
0.979580 02 
0.975110 02 
0.967960 02 
0.975300 02 
0.975780 02 
0.956320 02 
0.966070 02 
0.935320 02 
0.932430 02 
0.944560 02 
0.925950 02 
0.927600 02 
0.911060 02 
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TABLE 6. RI Field Spectn» for Different Line Length, X » S 

The line is open-circuited #t both ends. L denotes total line length. 
The RI field is the quasi-peak value calculated at the lateral distance 
of 15 • from the outer phase conductor with SKHs bandwidth. 

Frequency (fOfai) L * 10 m L • 1600 n L • 16000 » 

0
 1 06 0.114770 03 0.121110 03 0.110670 03 

0.10471D 06 0.114330 03 0.116690 03 0.112390 03 
0.1096SD 06 0.113690 03 0.116990 03 0.115430 03 
0.114620 06 0.113450 03 0.115410 03 0.115620 03 
0.120230 06 0.113000 03 0.114210 03 0.115940 03 
0.125690 06 0.112560 03 0.113510 03 0.113690 03 
0.131630 06 0.112110 03 0.113450 03 0.106440 03 
0.136040 06 0.111670 03 0.114110 03 0.107490 03 
0.144540 06 0.111220 03 0.115510 03 0.113070 03 
0.151360 06 0.110770 03 0.117710 03 0.114260 03 
0.156490 06 0.110320 03 0.120960 03 0.110490 03 
0.165960 06 0.109660 03 0.125390 03 0.107300 03 
0.173760 06 0.109410 03 0.124750 03 0.107150 03 
0.161970 06 0.106950 03 0.119020 03 0.106690 03 
0 190550 06 0.106460 03 0.114560 03 0.110160 03 
0 199530 06 0.106020 03 0.111250 03 0.107330 03 
0 206930 06 0.107550 03 0.109160 03 0.105650 03 
0.216760 06 0.107060 03 0.106700 03 0.106650 03 
0 229090 06 0.106600 03 0.109630 03 0.106060 03 
0.239660 06 0.106120 03 0.112440 03 0.105160 03 
0.251190 06 0.105630 03 0.116940 03 0.105790 03 
0 263030 06 0.105140 03 0.114530 03 0.105940 03 
0.275420 06 0.104650 03 0.109090 03 0.104000 03 
0.266400 06 0.104150 03 0.106240 03 0.105610 03 
0.302000 06 0.103640 03 0.103910 03 0.104640 03 
0 316230 06 0.103130 03 0.101620 03 0.104310 03 
0 331130 06 0.102610 03 0 996990 02 0.103550 03 
0.346740 06 0.102090 03 0.962570 02 0.103520 03 
0.363060 06 0.101560 03 0.992350 02 0.104290 03 
0 360190 06 0.101020 03 0.100450 03 0.102010 03 
0.396110 06 0.100470 03 0.102200 03 0.103220 03 
0.416670 06 0.999230 02 0.105200 03 0.100210 03 
0.436520 06 0.993650 02 0.106350 03 0.999770 02 
0.457090 06 0 967990 02 0.102940 03 0.101090 03 
0 476630 06 0 962250 02 0.100460 03 0.993060 02 
0 501190 06 0.976430 02 0.104740 03 0.995100 02 

o
 

S
 

06 0.970530 02 0.106210 03 0.974750 02 
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Th« 28 dB d«cr«as« appear# a little higher than the experimental data 

which ia about 20 dB. This is caused by the lack of exact statistical 

data for the build-up time of basic corona pulse. It should be noted 

that Eq. (6.12) is the formula of build-up time for the dimeter ranges 

from 17 to 33 mm. 

Line length* measurement positimi, propagation constants* and X 

determine the fluctuations of RI fields with frequencies around the 

geosetric mean RI values which is determined from the basic shape of 

corona pulae. The frequency maximiHM occur at the frequencies at which 

r(%;%,L,w,frepresented by Eqs. (6.33) and (6.34) has a maxim*» 

value. The calculated frequency maximn» at the center of line of 

length 1600 m occur at .115, .166, .251, .437, .603, .759, and .671 (Qfs 

in the frequency ranges from .1 to 1 MHz. An interesting observation 

can be made if it is noticed that the frequency maximms are close to 

the frequencies at which one of cos 0L, cos 20L, sin BL, and sin 201» is 

maximws assuming a velocity of propagation equal to the speed of light. 

This result agrees well with the observations found by tests or 

experiments {2,3,36,37,45,46.47). 

The mean number of corona events does not appear to affect the 

shape of frequency spectn» even though the RI levels increase as it 

increases. The measurement position is important in the shape of 

spectnm since the fr^uency maxiwims shift with it. 

The difference between the maximum and minimus RI levels at a 

given frequency can be observed to be as much as 17 dB from Tables 5 and 
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6. This fact may explain the fact (26] that the conventional Rl 

analyses do not entirely explain the differences bettraen the measured 

noise fields of different lines, nor the substantial fluctuations in the 

Rl level. It was found (23) that even in dry weather the Rl level can 

fluctuate over 12 dB. 

From this analysis, therefore, it can be suggested that the Rl 

analysis in the operating line must be based on the detailed analytical 

method taking into account the line length, terminations of the line, 

the mean number of corona events, and measuring position. 

4. Lateral Rl field profile 

The Rl field strength altmg lateral distance from an open ended 

trmwmission line is shown in the Figure 7. Lateral distance is taken 

from center conductor along a horizontal axis in a plane perpendicular 

to the line at mid-span. 

Figure 8 shows typical lateral attenuation curves for high voltage 

lines investigated by a Joint CIGRE and IE£E task force (23|. A careful 

comparison between the curve in Fig, 7 and 330-400 kv (WRI2) 

attenuation curve in Fig. 8 shows no significant difference. 

5 Axial Rj field profile 

Figure 9 shows the Rl field strength along axial distance from an 

open ended line of length 1 mile. Axial distance is taken along the 

axis of the line at 15 m laterally away from the outer phase conductor. 

Since there is no axial Rl profile reported in published literature. 
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this calculatsd axial RI profila is baliavad to b# useful in the R1 

analysis. 

From Figure 9, it is found that the difference between the maximum 

and minintm RI fields is as much as 3.94 dB. It can be easily imagined 

that the axial locations where the maximums and minimum occur depend on 

the terminations of the line. 

The numerical result in this section, therefore, suggests the need 

of a axial RI profile to find the maximim RI field. 

6. Pesisn parameters 

In the preliminary stages of the line design one is perhaps 

interested, not so much in an accurate determination of the RI level of 

a profwsed design, but more in obtaining a rough idea of weather or not 

the RI level is within reasonable limits. Or perhaps one is interested 

in obtaining a quick indication of how a small decrease in conductor 

size, or increase in phase spacing, or change in conductor height, etc.. 

will affect the RI level. This section gives such design curves, 

enabling one to obtain, with a# acceptable degree of accuracy, the RI 

level of any line whwe geonetry is reasonably close to base case 

geometry shown in Fig. 3 

The RI levels depending cm the design parweters such as diameter, 

voltage, conductor height, and phase spacing are given in Figures 10 • 

13. In these figures, RI refers to a measuring locaticm 15 m fro# an 

outside phase and are given for a typical ground resistivity of 100 8.m 

and for a measuring frequency of 1 MM» and meter bandwidth of 5 KHz. 
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Th« curve» presented in Figures 10 - 13 refer to specific 

conductor diameters, voltages, conductor heists, and phase spacings. 

Adjustment of the R1 levels determined from the curves is necessary if 

any of the parameters differ from those of the base case. 
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VIII. CONCLUSIONS 

A cooprchMslvt «nd ritorous analysis has baan prasantad in this 

dissartatimi of a stochastic modal to pradict radio intarfaranca causad 

by corona on high voltaga transmission systam#. Tha analysis prasantad 

nakas tha following principal contributions: 

1. A stochastic nodal of tha corona currant injactad into tha 

high voltaga (Mwar transmission lina has baan proposed. 

It is found that tha proposed corona currant is a 

statiMiary process under certain ass^tiras. Injected 

corona current is represented by tha power spectral 

density. 

2. A rigorous analysis is developed for the derivation of a 

stochastic transmission line equation. The solutitm of a 

developed stochastic transmission line equation with the 

influence of line terminations is obtained from rigorous 

and comprehensive analyses. 

3. The power spectral density of interference voltage caused 

corona is obtained by a rigorous stochastic analysis. 

4. The radio interference field strength at the radio receiver 

located near the line is developed by using the Wiener* 

Kbintchine theorwa. 

5. It is shown that the single wwductor stochastic R1 

analysis can be easily extended to the three phase R1 

analysis 
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fk)#t random parameter# are shown to be found from existing 

R1 data obtained by test or experiment. 

Numerical analysis has shown many important results which 

the existing R1 analyses couldn't figure out analytically. 

The following are such examples: 

1). The RI level varies as much as 13 dB depending on the 

line terminations. 

2). The number of corona events along the line significantly 

affects the RI level if it is greater than the order of 

1, which is assumed to be the number of corona events 

during foul-weather conditions. 

3). The frequency spectnms are fotmd to vary depending on 

the line length, line terminaticms, mean number of corona 

events along the line, measuring position, and the shape 

of streamer. It was shown that the RI level fluctuate* 

as oRtch a* 17 dB at a given frequency, which was not 

entirely explained by the conventional RI analysis. 

4). The RI level is shown to vary as much as 4 dB axially. 

It is suggested that the axial RI profile is needed to 

find the maximwi RI level. 
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XI. APPENDIX X. STATISTICAL PRELIMINARIES 

Th« sathtMticAl theory of probability and th« basic concapts of 

random variables and stochastic process form the basis of the 

developnemt in this study. In this appendix, soow basic definitions and 

results in probability theory, randwi variables, and stochastic process 

which are needed in the Chapters 2, 3, 4, and 5 are reviewed. 

A Elements of Probability Theory 

Events and probability 

The basic notims of probability theory are experiment, event and 

probability of events. When formalisins the notions of probability 

theory the first assu#q»tion is that the results of collection of 

experiments under investigation in a given situation are represented by 

a certain set 8 called space. Every meaningful event corresponds to a 

certain set A of S in such a manner that the probabilistic operations on 

events correspond to set-theoretical operations on the corresponding 

subsets of B. 

Moreover the points w e S correspond to atoms - nawly, every 

event is a si» of points while each point w cannot be represented as a 

stas of other events. It is noted that only arbitrary subset of 8 is 

called an event. However, «me must select out of 8 a suitable class of 

events from both a practical as well as a purely math#matical point of 

view. 
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Given a space Q, a Borel field, or a o-algebra B of subsets of fi 

is a class of subsets » j" 1,2,... , having following properties 

{48,491: 

1. Q K It 

2. If A| c B, then Aj' c B 

3. If Aj c B, J«l,2,... , then U" Aj c B. 

A Borel field is thus a class of sets, including the empty set * 

and the space S, which is cl**aed under all countable unions and 

intersections of its sets 

The space S along with the d-algebra of sets B defined on it is 

called measurable space (0, B) and the subsets of 8 belcmging to B are 

called B-measurable sets or simply measurable sets 

A triple (&, B. P) «msisting of a space of elementary events S, a 

selected o-algebra of events B in 9. and a measure P on B such that P(8) 

* 1 is called a probability space and the measure P is called the 

probability {48,49,$0,51|, 

Probability spaces are the initial objects of Probability theory. 

This, however, does not c^tradict the fact that when solving many 

specific problMW the probability space is not given explicitly. 

Given a random experiment E, a finite number P(A) is assigned to 

every event A in the o-field B. The niWber P(A) is a functimi of set A 

and is assumed to be defined for all sets in B. It is assumed to have 

the following properties: 

1. P(A) ̂  0. 

2. P(D) * I. 
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3. For a countable collection of mutually disjoint 

in B 

P{ 0 A. ) - I P(AJ. 
J J J J 

2. Randwi variables 

The concept of a random variable corresponds to the description of 

a stochastic experiment which Masure a certain numerical quantity %. 

It is assumed that for any pair of nua^rs a and b (a < b) the event 

A(a.b) expressing that X c (a.b) is an observable event. 

The point function X(w) is called a random variable (r.v.) if (1) 

it is a finite real-valued function defined on a sMple space Q of a 

random experiment for which a probability is defined on the o-al#ebra B 

of events and (2) for every real number x. the set {w: X(w) Sx) is an 

event in B, i.e., X is measurable on B (SI]. 

The relation X » X(w) takes every element w in 8 unto a point x on 

the real line R * (*, +*). There are many occasions to consider a 

sequence of r.v.'s X^ , J*l,2>...»n. In these cases, it is assumed that 

they are defined on the sMe probability space. The r.v. s X^ , Xg 

, , X^ will then map every element w of 8 in the probability space 

unto a point of the n'dimensional Euclidean space. It is noted here 

that an analysis involving n r.v.'s is equivalent to considering a 

random vector having the r.v.'s as components. 

Let X be a random variable with value in the measurable space (8, 

B). The function F^(x) defined by |31,49J 
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Fjj (x) • P{wî X(w) S x) • P(X 1 X) 

is called the distribution function of X. 

A randMi variable X Is called a continuous r.v. if its associated 

distribution function is continuous and differentiable almost 

everywhere. It is a discrete r.v. when the distribution function 

assumes the form of a staircase with a finite or countably infinite 

JUBpS. 

For a continuous r.v. X, the derivative 

fjj(x) • dF^(x)/dx 

in this case exists and is called the density function of the r,v, % 

[31). On the other hand, the density fimction of a discrete r.v does 

not exist in the ordinary sense. However, it can be constructed with 

the aid of Dirac delta functiw* Consider the case where a r.v. X take» 

on (mly discrete values x^. Xg,, x^. A definition of its density 

func^icm is (31) 

f%(x) » I P. 4(x -
j»l J J 

where 6(x) is the Dirac delta function and 

pj • p(% • xj). 

let Xj 1,2 be random variables with values in the 

measurable space (R® , B*). The functicm 

\x,...x  ̂ ^ \yy 
12 n 
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is called tha joint distribution function of a saquanca of a n r.v.'s 

{X") 131|. 

The corresponding joint density function is defined by (31) 

X (*1'*2 Xn)/#*!#*;'" **n 
1 2 n in 

if the indicated partial derivative exists. 

3. Expectation of random variable 

Let f(x) be the density function of a rando# variable X. which may 

exhibit either cmitinuous or singular properties, or Iwth. Cimsider now 

some real function g(x) of the original rmdc» variable, integrable over 

(-•> •) with respect to f(x). Define (31) 

g(X) » E{g(x)) » /" g(x) f(x) dx (A, I) 

as the man value, or expectatitm of g(X) with respect to the density 

function f(x). Mere, E is the expectation operator, defined according 

to Eq.(A 1). Note that, for purely discrete distributicms, this becomes 

g(x) » E{g(x)} » / g(%) I p. 6(x - x.) d% 
k»l * * 

n 
• I g(x̂ ) Pk ' 

k»l * * 

The n th moment of X, is defined by 

e » E{X ) » /• f(x) dx 
»• 

if / |x|® f(x) dx is finite. Moments of particular interest are 
•€» 

E(X), E(X'). the mean and mean-square values of X, while 
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E{(X - EX)») - E(X') - (EX)* « 0^' 

i# called the coverianc* of X and o its standard deviation. 

4. Independence 

Let (fi, B, P) be a fixed probability apace. TWo eventa A and B is 

called independent if P(A * B) * P(A) P(B). 

Random variables X^ (i c I) are independent fSl) if for any n and 

any i^ * %, k"l,2,...,n, the joint distribution function of the 

variablea X|)>X|2*""^in *4**^ to the product of the diatribution 

ftmctions of the variables X^^: 

M*il* *1 *in* V  ̂ V* 

If. therefore, X and Y are independent, 

f(*.y) • f(x) f(y) 

B. Stochastic Processes 

1 Definition and preliminary considerations 

Random variables or random vectors are adequate for describing 

results of random experiments which assume scalar or vector values in a 

given trial. In many physical trials, however, the outcomes of random 

experiment are represented by functions X(t) depending upon a parmeter. 

These outcomes are then described bg a ramdo# function X(t). where t is 

the parameter assuming values in a reference set T. Random function. 
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random procoss, and stochastic process will b# used synonymously in the 

subsequent discussions. Each realisation of a given random experiment 

is called a sample function or a meaner function. This description 

suggests that a stochastic process (s.p) X(t), t c T, is a family of 

sample functions of the variable t, all defined on the same underlying 

probability space (Q, B, P). 

Let {0, B, P) be a given probability space. If the realisation of 

an experiment is described by means of a function f(t) of a definite 

argument t, t c T* it is said that a random function is defined on (0, 

B. P) |49|. 

Thus, a random function is the mapping; w "* f(t) • f(t,w), w t 8. 

Additionally, it is rettuired that the function f(x,w) for a fixed x will 

be a random variable. A stochastic process defined in this way is 

specified the probability of the realizati»» of various sample 

functions. This generally requires advanced mathematics in measure 

theory. In order to circimvent this difficulty, another definition of a 

stochastic process will b« given, which will b# more fruitful in this 

study. 

At a fixed t. a s.p. X(t), t c T. is a ramkmi variable. Hence, 

another characterization of a s.p. is to regard it a* a fmsily of random 

variables, say X(t^), XCtg), , depending upon a parameter. The 

totality of all the random variables define the s.p. X(t). 

If to every finite set (t^,t2, of t t T, there corresponds a 

set of r.v.'s Xj » X(t^), Xj » XCtg). ..X^ » X(t^), having a well" 

defined joint probability distribution function 
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\...X 1 n 

- P{(Xj i Xj) • (Xj a Xg) * ' * (X^ s x^)) , n-1,2.... 

than this family of joint distribution functions definss a s.p. X(t), t 

c T 149J. 

In th« theory of stochastic procassss, a commonly us«d notion for 

th« joint distribution function given above is 

fn^*!'*!' '*n'*n) "\..X„^*l''l** *'*n'V ' 
I R 

and it is called the n th distribution function of the s.p. X(t). Its 

associated joint density function, assumin# it exists, 

f||C*j »t J Î « . JX^ttj^) * ï'^(Xj 11J Î « . îXjj» tjj^)/JXj «.. ®Xjj 

is the n th density function of X(t). 

A coaqfilex s.p. Z(t) can bo represented by 

2(t) # X(t) + jY(t) 

where X(t) and ¥(fc) are real s.p.'s. It is clear that 2(t) is 

completely characterized by a two-dimensional vector stochastic process 

2. Moments o| stochastic processes 

As in the case of random variables, some of the most important 

properties of a s.p. are characterised by its mcmients. In the sequel, 

the existence of density function shall be assumed. 
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In taras of its first dsnsity function f^(x,t), ths n th moment of 

• s.p. X(t) #t â given t * T, a^(t), is dsfintd by |31«49) 

«„(t) - E<x"(t)) - /" x" f.(x,t) dx. 
" — * 

The first moment is the mean of the s.p. X(t) at t. The n th central 

moment of X(t) at a given point x is 

¥„(t) • E{|XCt) - BX(t)l) « /" (x - x)® f,(x,t) dx. 

Of practical la^rtmce is WgCt), the covariance of X(t) at t. 

The moments of X(t) defined in terms of its second density 

ftmctim (2(*1'*1'*2'*2) #?#* effect, joint moments of two randm 

variables. The joint moment of X(t) at t^ and t^ is defined 

by (31.491 

®Bm *̂rV " *(%"(%)) X t̂tg)) 

• i* /* x̂ x̂g" fgfx̂ .t̂ ixg.tg) dx̂ dxg 

«IjCtj.t^) is called the aotovariance function of the s p. XCt) and is 

denoted by * E(X(tj) Yttg)) is called the cross-

variance functim where the random variables involved belong two 

different stochastic processes. Similarly, the awtocovariance function 

of X(t) is given by 

KjOjCtj.tj) » e((X(t̂ ) - m(t̂ )){X(t2) ' mCtj))! 

where. *(t^) » EX(t^), for i - 1.2. 
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3. Stationary and wid#"*#nm# stationary processes 

A s.p. X(t), t c T, is said to be stationary or strictly 

stationary |S2) if its collection of probability distribution stays 

invariant under an arbitrary translation of the time parameters, that 

is, for each n and arbitrary t, 

where tj + i * T, j " 1,2,3,.,n . For practical purposes, a wider 

class of stationary stochastic processes is of interest. 

h s.p. X(t), t c T, is called a wide-sense stationar? process 

149,521 if 

1. |^(t)| • constant. 

2. BX^(t) < -, E(X(tj) Xltg)) - function of (tj - tj). 

h' Eraodicity 

Er^odicity deals with the specific questions of relating 

statistical or ensemble averages of a stationary stochastic process to 

time averages of its individual sample ftmctions. 

Let %(^)(t) be a sample function of a stationary s p X(t), t t T. 

The time average of a given function of g{x^^^{t)|, denoted by 

< g(%(j^(t); >, is defined bf (31) 

< g[%(j)(t)| > • lim 1/2T g[%(j)(t + t)l dt 
T*m -T 

if the limit exists. 
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à stationary process X(t), t c T, is said to b« argodic relative 

to 6 if, for every stx^'^^(t)), G being an appropriate domain of #| |, 

< *(x(j)(t)) > " C{g|X(T)]) with probability one. 

5. 1ndeoendent-incregent processes 

Consider a s.p. X(t), t 2 0. The random variable XCtg) - %(t^), 0 

i tj 1 tg, is denoted by XCt̂ .ê ) ***** called an increment of X(t). 

If for all tj < tj < ... < t^ the increment XCt^.tg),..,X(t^ ^.t^) are 

mutually independent, the s.p. X(t) is called an independent « inc rement 

stochastic process. In practice, this definition is used only in the 

case of continuous parameter stochastic process. 

An important example of an independent'increment process is the 

Poisson process. Short effects, thermal noise, and a large class of 

impulse noises are examples of physical situations modeled 

mathematically by the Poisson process. 

A stochastic process N(t). having following properties is called a 

Poisson process (52): 

1. N(t) is independent of the number of occurrences in an 

interval (O.t). 

2. p^(t) or P(N(t) s n) depends only on the length t of the 

interval and is independent of where this interval is 

situated, i.e., p^(t) gives the probability of occurrences 

in the interval (tj.t + t^) for every t^. 
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3. In an interval of infinitasinal length h, tha probability 

of exactly one occurrence is Xh + o(h) and that of more 

than one occurrence is of o(h). o(h) is used as a symbol 

to denote a function of h which tends to 0 swre rapidly 

than h. 

Two important results on the Poisson process are presented without 

proofs (see pp 9* - 100 of [S2)i pp 123 - 124 of (34) for detailed 

proofs). 

If H(t). t 2 0 is a Poisson process, then 

PnU) - e'k* (%t|" . n-0.1.2.,.. . 

The mean and variance can be computed easily and given by 

E(N(t)) » Xt , var(N(t)) • U . 

Let N(t), 0 a t i T, be a Poisscm process If t^, i » 1.2, .X. 

are the occurrence time, the joint probability density function of t^, 

tg....t^. and N is given by 

fCtiytg, .t̂ j.N) » f̂ j(N) f)(t%) 

where, 

f%(N) • , N = 0,1,2, 

fj(tj) » l/T for 0 3 a T , i « 1,2,3,,. . 
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XII. APPENDIX II. FOITTRAN PROGRAM FOR R.I. FIELD CALCULATION 

C MAIN PROGRAM 
C 

C * RADIO imrSRFEREMX COMPUTATION * 
C * BASED ON STOCHASTIC MODELING OF CORONA DISCHARGE * 
C * ON HIGH VOLTAGE POWER TRANSMISSION SYSTEMS * 

C 
C 
G .. ......... -------------
C ABSTRACT 
C 
C THIS PROGRAM IS TO COMPUTE RADIO INTERFERENCE FIELD CAUSED 
C BY OmONA DISCHAMÎES ON THE HIGH VOLTAGE POWER TRANSMISSION 
C LINES. LINE CONFIWRATIONS CO@»iœRED HERE ARE SINGLE CIRCUIT 
C -THREE PHA# LINES WITH GMUND WIRES,BUT ONE CWDUCTOR PER 
C PHASE. 
C THE BASIC SCHEME TO COWUTE R.I. FIELD CAN BE SUMMARIZED AS 
C FOLLOWS: 
C 
C (I) READ IWUT DATA SUCH AS: 
C EARTH RESISTIVITY (»») 
C PULSE PERIW (WIDTH) 
C BANDWIDTH OF RECEIVER (BAND) 
C LINE LENGTH (TL) 
C PROPORTIONAL FACT*» (PC) 
C TEMMNATION IMPEDANCES (TEA, TZB) 
C LINE TO LINE VOLTAGE (VOLT) 
C CO@mUCTW HI6HT (H) 
C X-COORDINATE OF CONDUCTS (XL) 
C RESISTIVITY OF CONDUCTOR (RES) 
C RELATIVE PERMEABILITY OF CONDUCTOR (RELP) 
C RADIUS or COMJUCTI» (RAD) 
C 
C (2) COMPUTE MEAN AMPLITUIX OF COiONA PULSE (AMP). TO DO THIS 
C F0LLWIN6 PARAMETERS MUST BE COMPUTED : 
C GENERATION FUNCTION (GENF) 
C SPECTRAL DENSITY OF EACH PULSE (WSP) 
C MAXIMUM GRADIENT OF EACH PHASE (GRAD) 
C 
C (3) COMPUTE LINE PARAMETERS (Z AND Y). 
C 
C (4) COMPUTE MODAL PROPAGATION CONSTANT (GAM) . TRA^FORMATION 
C MATRICES (S FOU VOLTA(%, Q FW Cf«RENT).AND CHARACTERISTIC 
C IMPEDANCES (ZC) 
C 
C (5) COMPUTE RADIO INTERFERENCE VOLTAŒ. 
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C 
C (61 COMPUTE RADIO INTElffERENCE FIELD. 
C — - ------
c 

C0MPtEX*16 2(3,3).y0,3),8(3.3).Q0.3),6AM(3,3) 
C0NPLEX*16 V0(3),ZP(5,5)»0AMMA(3),AHAT(3,3) 
C0HPLEX*16 ZC(3,3),TZA,T2B,RMA(3),RNB(3) 
REALMS DU(5.5},BBI(3,3),AIPM(3),RAD(5).VAR(3),AMP(3) 
1ŒAL*8 X%,(5) ,RFV(3) ,XIA(800),(mAD(3) ,F(200) ,171 )( 1000) 
REAL*# H(5).RES(5),REIP(5),X,DLB(3,3),GAMF(3) 
REAL*# RFI2(lG0O),RAMD,RKO,WA,WB.XM.W%%mi,WSP,W,WK(6O) 
IŒAL*S TL»BAN0.K8I.FL.RFI»V0LT.PC,(aNF(3).WF 
REAL*8 T2AR.T2AI»TZBR,T2BI 
IPfTEOER K,Nl,N,NB 

C 
C 
C N: TOTAL miBER OF PHA8E CONDUCTORS AND GROUND VIRES 
C K: NUMBER OF PHASE CONDUCTORS 
C Nl: WMBER OF ITERATION FOR R.I. SPECTRUM. 

K»3 
NB»2*(N#N*N) 
Nl"10l 

C 
C INPVr DATA AND WRITE OUT THESE DATA. ' 
C 

»AD(12,*) TEAR.TZAI.TEBR.TZBI 
READ(12»*) RHO,WIDTH,BAND,TL.PC,VOLT 
READ( 12 .*) (H(l) .XL(I) .RESd) .RELPd ) .RAD(I). I»1 .N) 
WR1TE(6.200) 
WI1TE(6.202) TZAR.TZAl.TZBR.TZBl 
VR1TE(6,20S) 
WR1TE(6.210) RHO.WIDTH.BAND.TL.VOLT.PC 
WIITE(6.215) 
VS1TE(6.220) (Hi I) .XL(I ) .RESCI ) .RELPCI ) .RAO( I ). l»i .N) 

C 
TZAPOCMPLX(TZAR .TZAl ) 
TEB»DCMPm(TZBR.TgBI ) 

C 
C COWVTE UNE TO GROUND V0LTA6E(VQ) AND INVERSE OF PEAK TIME OF 
C CURRENT PULSE (KSI). 
C 

V0LT^0LT/D8QRT(3. DO) 
V0(l)»VOLT*(I.000,0,000) 
V0(2)»V0LT»(-.5D0,-0.866025400) 
V0(3)«V0LT*(-0.500.0.866025400) 
K8I»l.0D09/(2555,6*RAD(l)*2.^27.778) 
WAPKSI/2. 
¥B*KSI*2. 
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C COMPUTE MAXWELL'S COEFFICIENT (DLA). REDUCE DLA BY KRON 
C REDWTION.AND FIND ITS INVERSE(BBI). 
C 

CALL POmi(N,H,XL,RAD,DLA) 
CALL KM)NR(N,K,DLA,DLB) 
CALL INVR(DLB.BBI) 

C 
C SET FREQUENCY(V) AND MEAN NUMBER OF CORONA(RAMD). 
C 

W>6.283i8SD06 
RAMD-10. 

C 
C COMPUTE GRADIENT OF CONDUCTOR . 
C 

CALL GRAD8B(N,K.BBI.V0.RA0,GRA0) 
DO 40 I»1.K 

40 GENF(I)«10.««((8S-S80./6RAO(1H38.*DLOC10(RAO(I)«200.DO/3.8DO)) 
1 /20.)/1.0D06 

C 
C COMPUTE SPECTRAL DENSITY OF PULSE(WSP) AND PULSE AMPLITUDE(AMP). 
C 

CALL WSPSKV.WA.VB.VSP) 
CALL PULAMP(K,RAMD,BAND.WIDTN.GENF.GRAD.WSP,PC.BBI,AMP,VAR) 

C 
C THIS DO LOOP COMPUTES SPECTRUM OF R,I.(VARIATIW OF R.I. AiWG 
C FRE(9IENCY) FROM .IMHZ TO 10 MHZ. 
C 

DO SCO Lp1.N1 
F(L)»10.**(. 02*DFLOAT(L)+4.98) 
FIpF(L) 
1̂ F(L)*6.283185 

C 
C COMPUTE LINE PARAMETERS. 2 AND Y (SUBPROGRAM IMPED). 
C 
C COMPUTE PROPAGATION CO(0TANT, CHARACTERISTIC IMPEDENCE. 
C TRANSFORMATION MATRICES. AMATW.*PI*EPSIL(XMf*S) .ATTEWATION 
C CONSTANT (SUBPROGRAM TRANS). 
C 
C COMPUTE REFLECTION COEFFICIENT (SUBPROGRAM REFL) 
C 
C COMPUTE PROPAGATION FACTORS (8UBPRO0IAM GAMF) 
C 
C COMPUTE RADIO INTERFERENCE VOLTAGE (SUBPROGRAM RIV) 
C 

CALL WSPSB(W.VA.UB.VSP) 
CALL IMPEIXN.K.FL.RES.RELP.DLA.RAD.RHO.H.XL.BBI.ZP.Z.Y) 
CALL TRAf«(K,NB,WK.FL,2,Y.S.Q.ZC.ALPH,GAMMA,6AM.AMAT) 
«ML/2. 
CALL ReFL(K.TZA.TZB.TL,ZC,6AM,KHA.RHB) 
CALL GAMSB(K,ALPH,GAM.RAMD.Rm.RHm.TL.XM,ZC,GAMF) 
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CALL RIV(K.AMP.VAR,WSP,tf!DrrH.S.6AMF»ZC,RFV) 
C 

C COMPUTE R.I. PROFILE ALONG LATERAL DISTANCE AT 1 MHZ 
C 

IF(DABS(F(L)-1.0D06).CT.100.) GOTO 150 
X—l.ODO 
DO 60 1*1,101 
X-X+l.ODO 
XLA(I)*X 

C 
C COMPUTE RADIO INTERFERENCE FIELD RFI (SUBPROGRAM FIELD) 
C 

CALL FIELD(K,N,AMAT,%,H,%L,BA)m.RFV,RFI) 
60 RFIKD-RFI 
C 
C WRITE our R.I.( OB ABOVE MICROVOLT PER METER ). 
C 

PRIMT/ • 
PRIKT, • 
PRINT/ R.I. AT 1 MME ALONG LAT. D1ST.(0B ABV MV/M)' 
MINT, ' ' 
VRITE(6.320)(XLA(I).RFI1(I).I»1.101) 

C 
C COMPUTE R.I. FOR VARIOUS FREQUENCY AT 15 METERS FROM OUTER 
c coNDwnm. 
C 
150 X»XL(2)-^15.D0 

CALL FIELD(E.N.AMAT.X.H.XL.BAND.RFV.RFI) 
RFI2(L)«RFI 

500 CONTINUE 
C 
C WRITE OUT R.I. SPECTRUM. 
C 

WRITE(6.320)(F(l),Wri2(l),I»l,Nl) 
C 
C 
200 F(»MAT( * I ' ,9X, TERMINATION A'. 14X. 'TERMINATIONS' ) 
202 F(»MAT(/,4D14.5) 
205 F0RMAT(//.3X, 'RHO' ,7X, 'WIDTH' .6X, 'BAND' ,7X, 'Tt' ,7%, 'VOLT' ,7X, 

1 PC) 
210 F<»MAT(//,F10.2,F10.4,4F10.2) 
215 F0miAT(//,3X.'HIGHT'.4X,'XL',10X.7X.'REIP', 

1 7X,'HELPER',4X,'RADIUS') 
220 FORMATC/,2F10.2,D12.4,F10.1.012.4) 
320 F0RMAT(/.3X.2015.5) 

STOP 
END 

C 
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V(2,1)«U(2,3)«U(3,1)-0(2,1)*0(3,3) 
V(3,1)-U(2,1)*U(3,2)-U(2»2)*U(3,1) 
V(3»2)-U(1.2)*U(3,1)-0(1»1)*U(3,2) 
00 10 J*l,3 
OO 10 %"1,3 

10 
RETURN 
END 

C 
C 
C SUBROUTINE TO COMPUTE DU (•2.*PI*EPS!LON*P0TEKT1AL COEIT. ). 
C PARAMETERS ARE D (DISTANCE FROM I TK COND. TO IMAGE OF J TM 
C COND.), SO (DISTANCE FROM I TM COND. TO J TM COND.). 
C 

SUBROUTIPm POTEN(N,M,XL.RAD,DU) 
REALMS H<N)«XL(N),RA0(N),DU(H.N),0,SD 
00 100 I»1,N 
OO 100 ̂ 1,1 
D"DS0IT( m I )*N(J))**2+(%L( I ) .%L(J))**2 ) 
SD"OW( (N(J)-N(I) )**2*(ja( J) -XL( I ) )**2) 
IF(I.EQ.J) SO-RAO(I) 
DU(I.J)»0l06(D/80) 
DU(J.1)*DU(I.J) 

100 CONTINUE 
RETURN 
END 

C 
C 
C SUBROUTINE TO REDUCE COMPLEX MATRIX ¥(N.N) TO X(K,K) BY KRON 
C REDUCTION, 
C 

SUBRWnNE KR(»(C(N,K,Y,X) 
C0MPLEX*16 Y(N.N).X(X.X) 
INTEGER END 
END-N 

10 END4ND-1 
DO 20 I»l.Bm 
DO 20 J»1,END 
M»END»l 

20 Yd, J)»Yd. J)-Yd .M)*Y(M.a)/Y(N.M) 
IF(END.GT.K) 60 TO 10 
DO 30 l»l.E 
CO 30 J»l,K 

30 Xd,J)=Yd.J) 
RETURN 
Dm 

C 
C 
C SUBROVnNE TO REDUCE REAL MATRIX Y(N.N) TO X(K.K) BY KRON 
C REDUCTION. 
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C 
SUBROimNE KRONR(N,K.Y,X) 
RW^8 Y(N.N).X(K.K) 
IKTECmR 
EMD-N 

10 BND-END-1 
DO 20 I-l.ENO 
DO 20 J«1»END 
W"END*1 

20 Y(1,J)-Y(I,J)-Y(I.M)*Y(M,J)/Y(M.M) 
IP(ENO.GT.K) 60 TO 10 
00 30 %"1,K 
00 30 J«1.K 

30 X(I,J)-Y(I,J) 
RETURN 
END 

C 
C 
C SUIROVnNE TO COMPUTE SPECTRAL DENSITY OF CORONA PUISE. 
C PARAMETERS ARE VA("XSI/2) AND l»(»K8I*2). 
C 

SUBROUnNE WSPSB(M.WA;WB.WSP) 
REAI^S W,WA,WB,WSP 
WSP»3.694S2t*(DATAN(VB/W)-DATAN(VA/W)-V*(VB-VA)<^(V**2-VA*VB)/ 

*(W**2#m**2)/(¥**2+VA**2) )/W/ (IfB-WA) 
RETURN 
END 

C 
C 
C SUBROUTINE TO COMPUTE BOTH MEAN AND VARIANCE OF CORONA 
C CURRENT PUISE. 
C 

«JBROUnNE PUIAMP(K.RAMD,BAND.WIOTM.6ENF>GRAO.VSP.PC.BBI.AMP.VAR> 
iKAl^S RAMD.AMP(K).VAR(K).GENF(K).BBI(K.K) .BAND.WIDTH 
REALMS W8P.PC.SUIf.(mA0(K) 
DO 20 I»l.K 
SUM"0.0 
DO 10 J»l.K 

10 SWMamBBI (I, J)*6ENF( J) 
AMP( I )»DSQRT(WIDTH/ (6.*BAND*RAMD*WSP*( I. +PC**2) ) )*SUM 

20 VAR(I)»(AHP(l)*PC)**2 
RETURN 
END 

C 
C 
C SUBROUnNE TO COMPUTE MAXIMW* GRADIENT OF CONDUCTOR. 
C 

SUBROUTINE 6RADgB(N,K,BBI .VO.RAD.GRAD) 
C0MPl£X*16 V0(K).8UM 
READ»8 RAD(N).^tAO(K).BBI(K.K) 
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DO 20 1*1,K 
SUM«»(0.0,0.0) 
DO 10 J"1,K 

10 SUh^lffHBBl(I,J)«VO(J) 
20 0RAD(])*CDABS(SUN/RAD(I)/100.D0) 

RETURN 
END 

C 
C 
C SUBROUTINE TO COMPUTE UNE PARAMETERS, Z AND Y. 
C PARAMETERS ARE: 
C XG i REACTANCE BY GEOMETRY OF CONDUCTOR. 
C RC ; INTERNAL RESISTANCE OF CONDUCTOR. 
C œ i RESISTANCE CONTRIBUTED BY GROUND. 
C XE i REACTANCE CONTRIBUTED BY GROUND. 
C R AND SETA i PARAMETERS 
C 

SUBROUHNE 1MPED(N,K,F1.,RE8.RELP,DU,RAD,RK0.H,X1»,BBI ,2P,2.Y) 
C«*PLBt*16 2(K.K),Y(K,K),2P(N.N) 
REALMS D1A(N,N),FL,RE5(N).RELP(N),RAD(N) 
REALMS RMO,M(N),XI,(N) 
REAI^B BBI(K.K),XG,RC,SETA.R,RE.XE 
DO 20 I"1.N 
DO 20 J>1.I 
XG-1. 2S6637D-6*FI;»DIA(I. J) 
IF(I.EQ.J) XG>1.256637D-06*Fl^(DLA(l. 1)4-1.2497442) 
RC»é. 324S55D-4*DS(PT(RES( I )*RELP( I )*FL)/RAD(I ) 
IFCl.NE.J) RC^.ODO 
R"2. «09926D-3*DS<»T(Fi/RH0)»D8QRT( (H(I )*H( J) )**2+(XL( I ) 

I -%L(J))**2) 
8ETA»DARC0«((H(I)•«(J))/D8QRT((H(I)+H(J))**2+(%L(I) 
I -J£I.(J))**2)) 
mi.EQ.J) SETA^O.ODO 
RE»2.5132740-6*{DC08(»ETA)/ (DSQRT(2,D0)*R) 

* -0«»C2.0O*8ITA)/(»**2)*DCOS{3.*8m)/(BS<»T(2,W)* 
* II**3)*3.*DC08(5.*SETA)/{DSI»rr(2.D0)*R**5))*Ft 
XE»2.5132740-6*(BC0«(SETA)/ (08Q8T(2 .D0)*R) 
* -DC0«(3.*8ETA)/(D«»T(2.D0)*R**3)^ 
* 3>DC0«(5,*»ETA)/(DS(»nr(2.D0)*R**5))*FI, 
2P(I, J)»OCMPy((RC+BE.XG«C+XE) 
ZP(J.l)»2P(I,J) 

20 CONTINUE 
CAM, KRONC(N,K,ZP.Z) 
DO 30 I»1,K 
DO 30 J*l.K 

30 Y(l.J)»DCHPlX(0.0D0.3.4954l9D-l0*FIrf*BBl(I.J)) 
RETURN 
EW 

C 
C 
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C SUBROUTINE TRANS COMPUTES CHARACTERISTIC IMPEDANCE, ATTENUATION 
C CONSTAffT, PROPAGATION CONSTANT, AMAT. 
C 

SUBROUTINE TRANS(K,NB.WX.FI.,Z,y,S.Q.ZC.ALPR,6AMMA.6AM.AMAT) 
C0HPLEX*16 Z(K.K),Y(K.K).S(K,K),Q(K,K),6AM(K,K),AMAT(K,K) 
C0ÏIPLEX*16 GAMHA(K),ZC(K,K) 
REALMS AIPH(K),WK(NB),PL 
IffTEGER 1ER 
CALL miLT(X,K.K,Z,¥.AMAT} 

C 
C SUBROUTINE EIGCC IS I.M.S.L. LIB TO COMPUTE EIGENVALUES (GAMMA) 
C , MODAL MATRIX (WKOSE COLUmS ARE EIGENVECTORS, S) OF (K,K) 
C COMPLEX MATRIX AMAT. VX(NB) IS THE WORK SPACE. 
C 

CALL EIGCC (ANAT,3.3,2,6AMMA.S,3.WX.IER) 
CALL INVC(8,AMAT) 
DO 60 1*1,3 
DO 60 J-I,3 
6AM(I,J)-(O.DO.O.DO) 
Q(J,I)-AMAT(1.J) 
IF(I EQ, J) 6AM(I.l)«l./C0SQRT(6AffiiA(n) 

60 OJKnNUC 
C 

CALL MULT(K,K,K,6AN.AMAT,ZC) 
CALL MULT(K,K,K.ZC,2,GAM) 
CALL MIILT(X.K.K.6AM.Q.ZC) 

C 
C 
C COMPUTE (AMAT)"-j(2*PI*0MEGA*EPSIL0N)*(Y)*(S) 
C 

CALL miLT(K.K.K.Y.S.AMAT) 
DO 70 l»l,K 
DO 70 

70 AMAT(I.J)»0OfPLX(0.DO,-2.860««D09/PL)*AMAT(I.J) 
DO 90 I»l.I 
DO 90 J»1.K 
6AM(I,J)»(0.00.0.00) 
CAMd. I )«CDSIPT(6AMMA( 1 ) ) 

90 ALPH(I)»ntEALF(GAM(l.l)) 
RETURN 
END 

C 
FUNCTION DREALF(A) 
C0tiPLEX*t6 A 
DREALF«CDAiS( (MDCO»UG(A) )/2. DO) 
RETU»i 
END 

C 
C 
C SUBSOUnNE TO COMPUTE RADIO INTERFERENCE VOLTAGE. 
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C 
SUBROUTINE RIV(K,AHP.VAR,WSP,WIDTH.S.6AMF.ZC,RFV) 
C0HPtEX*16 S(K.K),ZC(K,K),StJMl.SUH 
RSAI^S AHP(X) ,VAR(K) .VSP.WIimt,6AMF(K) .RFV(K) .VF.AMPV 
DO 10 M-1,K 
SUM1«(0.D0,0.D0) 
DO 20 1-1,K 
AMPV»AMP(I)**2+VAR(I) 
SUM-(O.OO.O.DO) 
DO 30 ̂ l.K 
WF»2. *WSP*àMP( 1 )*AMP( J)/W10ÎH 
IF(l.EQ.J) WF*2.*WSP#AMPV/WIDTM 

30 Sm"SU**DCONJG(S( )*WF 
20 8UHl«SUHHSUn*8( I ,M) 
10 RFV(M)*DREAiF(SUNl)*GAHF(H)«C0ABS(ZC(N.H))**2 

RETURN 
END 

C 
C 
C 
C SUBROUnNE TO COMPUTE RADIO INTERFERENCE FIELD. 
C 

SUBROUnW FIELD(K,N,AMAT,%,M,XL,BAND,RfV.RFI) 
REAI^S X.H(N).XL(N).RFI.SUH3.RfV(K).BAND 
COMPLEX*!# AMAT(K.K).SVN1 
SW)"O.ODO 
DO 10 I«1»K 
SUMMO.DO.O.DO) 
DO 20 ̂ l.K 

20 SUM l»SUMl+AMAT( J ,I)*2.0*H( J)/ ( {X-XL( J) )**2+M(J)**2) 
10 SUM3»SUM3+RPV(I )*CDABS(SUM1)**2 

RFI»10.*DL0610(SUH3*1 ,D12*BAW) 
RETURN 
END 

C 
C 
C 
C SUBROUTINE REFL (mPUTE INFLECTION COEFFICIENTS, 
C 

SUBROUTINE REFL (K.TZA.TZB.TL.ZC.GAM.RHA.RHB) 
C0NPLEX*16 TZA.TZB.RHA(K).Ria(K).ZC(K.K).6AM(K.K) 
REALMS Th 
DO 10 ï»l,K 
RHA(I)»(TZA-2C(I, I ) )/(TZAfrZCd. I ) ) 

10 RH8(I)*(T2B-ZC(I.I))/(TmZCCI.I)) 
«mm 
END 

C 
C 
C 
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C SUBROUTINE 6AHSB COMPUTES PROPAGATION FACTOR WHICH IS CAUSED 
C BY PROPAGATION OF INJECTED CORONA CURRENTS AND THEIR IMAGES 
C DISTRIBUTED STOCHASTICALLY AlONG TRANSMISSION LINE. 
C 

SUBROUMNE GAMSB(K,ALPH,GAM,RAMD,RHA,RHB,TL,XM,ZC,GAMF) 
C0WLEX»16 RHA(K).RHB(K).ZC(K,K),U,R,E.G.C6,P,Q,GAM3,6AM5 
C0MPLEX*16 6AN(K,X) 
REALMS ALFH(K),RAMD,TL,XM,6AMF(K),A,B,L,X,S,T,GAM1,6AM2,GAM4,D 
DO 10 I"1,K 
A»ALPH(I) 
B-RAMD 
P-RMA(I) 
Q-RHB(I) 

X»Xtt 
S-C0ABS(P)**2 
T<DABS(Q)**2 
U*OCONJG(P) 
R"DCONJG(Q) 
E«(6AM( 1.1 )-OCOMJ6(CAM( IJ ) ) )/2. DO 
©NÎAMd.l) 
aî-DC0NJ6(6) 
GAMl«B*C2.-OEXP(-2.DO*An)*(l-8)-OEXP(-2.DO*A^(L-X))*( l-Tî-
1 DBXP(-2.00*A*(l^X))*S*Cl-T)-T*(I-8)*OEXP(-2.DO*A*(2,DO 
2 *L-%))-SMMmP(-4.D0*A*L))/(2.*A) 
6AM2»B*raaALr (P»(MaP( -2. DO*A*L) -COEXP( -2 .D0*(A*WE*%) ) )+ 
1 Q*(Cl«XP(-2,DO*G*(L-X))-(l-8)*CBE»(-2.00*(G*L-E^)) 
2 -S*T*CDI3CP(-2.DO*(G*LH»*X)))+T*P*(CDe{P(-2.DO*(A*L 
3 •2.00*E*X))-CDfXP(-2.DO^(2.00*A*L-CG*X)»)/(A) 
GA«3»P^(0EXP(-2,00*A'»X)-C0EXP(-2 >G^) W(DEXF(-2. DO^-A* 
2 (L-X))•a«XP( 2,D0*(^(L-X)))+P#Q*((mXP(-2,DO*(G*L.E*X) )> 
2 CDEXP(-2.D#(A*L*E*X)).2,*CDEXP(-2,*G»L))+U*Q*(CDEXP( 
3 -2,DO (̂A^L-E*X))-COEXP{-2.00*(e*L-E )̂))+Q*S*(OEXP( 
4 •2,DO»A*(UX))-CmP(-2.DO*(CG*X+G*L)))*P*T>(DBXP(-2,00* 
5 A*(2,DO*L'%))-aK%P("2.DO*(2.DO*A*L-CG*%))) 
6AM3>(6Aim0C0NJ6(6AM3) )/(0D0.2, D0)*B/C0AB5 (E) 
6AN4>B**2/COAB8(6)**2*(CDAB8(2.DO-G1»XP(-1.DO*6*X)-COEXP(-1.DO 
1 *G*(L-X)))**2+S*COABS(COEXP(-l,DO*G*X)-CDEXP(-l.DO»G*(X+L)) 
2 )**2+T*C»AB8(COIXP(-l.DO*G*(2,DO*L-X))-CDEXP(-l,BO^(L-X) 
3 ))**2Wr*CDABS(CDB(P('I.D0*G*(2,D0*L'X))+CDEXP(.l,D0*G* 
4 (I^X))-2.*OI£XP(-2.00^A*L))**2) 
GAM5*(2. •COEXP(-l.DO*CG*X)-a»XP( 
1 Ce*(L-X)))*(P*CI«XP(-l.DO*G*X)-P*(l-Q)*a)EXP(-l,DO*G*(lAX) 
2 )-Q*(l-P)*ClM5XP(-l.OO*e*{2,DO*L-X))+Q*CDEXP(-l,00*G*(W))-
3 2>P*Q*CDEXP(-2.D0*e»L))+U*Q»(CBEXP(-l,*CG^)-C0EXP(-l.'S'Ce* 
4 (X+L)))*(CDiXP(-l.*©*(L-X))^(l-U)*CDEXP(-l.*G*(2.*L-X))* 
5 U*a«XP(-l.*©^(LfrX))-2.^U*CI«XP(-2.*6^L)) 
GAII5»GAM5+P*T»I»XP(-4 .D0*A*L)*(CIH0{P(6*X)+CDEXP(G*(L-X) )-2 - ) 
I *(CDEXP(CG*(X^I.))-CDEXP(CG*X)) 
GAM5»2 .*B**2/CDAB8(G)**2*0BEAlF(GiAM5 ) 
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1>-C0ABS(2. D0*( i. DO-P»Q*CDEXP( -2. D0*0*L) ) )**2 
GAHF( I )»(6AN14QAM24CDABS (GAM3 )+GAM4+CDABS (GAM5 ) ) /D 

10 CONTINUE 
RETURN 
END 

GENTRY 
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