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I. INTRODUCTION
A. Introductory Background

The history of the electric power industry gll been one of rapid
growth throughout the years of existence. As power system loads have
increased and need for transfer of large blocks of power has developed,
there has been a continuing increase in transmission voltage levels from
sbout 60 kv at turn of century to 765 kv in 1965 {1]. Even now,
research and development work is well under way for the next higher
voltage level which is expected to be in the 1000-1500 kv range [},2].
The motivation for the trend to higher transmission voltage is the need
to supply low cost, reliable electric services to a growing population
having a vigorous growing in per-caspita use of electric energy. These
and other reasons for higher transmission voltage are discussed in
detail in the literature [1,2,3]. Increasing the voltage of power
network is associated with a large number of design criteria for a
transmission system [4]. One of most important requirement is to meet
the acceptable audible and radio noise level. In fact, conductor size
and arrangesent are determined based on the radio and audible
interference level calculation, and this may result in selecting a
larger conductor area than is dictated by loss economics.

Since the days of Townsend, corona has been investigated in many
of its theoretical aspects [5-10]. Because of the extreme complexity of

the phenomenon, however, progress attained in a smsall step, each dealing



with a particular problem. In a8 nonuniform field, various visual
manifestation of locally confined ionization and excitation processes
can be viewed and measured long before the complete voltage breakdown
between the electrodes. These manifestation have long been called
"coronas". A more precise, physical definition is [10]: A corona is a
self-sustained electrical gas discharge where the Laplacian
(geometrically determined) electrical field confines the primary
ionization process to regions close to high field electrodes or
insulators. Electrical energy in the corona discharge is transformed
into other forms of energy: light, sound, electromagnetic energy. etc.
The fast current variation produced by stresmers induces waves which
cause disturbances in electronic devices and audible noise. These
phenomena such as power loss and radio noise caused by corona discharges
are the main reasons to attract the attention of electric utility
industry for many years.

The term radio interference or RI is normally used as a general
designation for communication system interference origineting from a
variety of electrical causes [11,12]. It is used throughout this work
in reference to radio noise caused by corona discharges on high voltage
transmission systems in the AM (amplitude-modulated) broadcast band from
10 KBz to 10 MHz.

In the connection with the trend to higher voltages and the great
influence of this high voltage on the radio interference, a considerable

amount of research of the radio interference caused by corona has been



carried out in the past half-century. RI measurements made on short
full-scale single- and three-phase test lines as well as on operating
lines have reaulted in several empirical and semi-empirical methods of
radio interference calculation. However, the methocd can be divided into
tvo separate groups wvhich will be referred to as analytical and
comparative [13}.

The analytical method was initially underteken by G. E. Adams
{14), and has been presented in various papers [14-19]. This method is
based on characteristic quantity called generation function which is
determined by measurements made in test cages of short lines for
different conductor arrangements and under known conductor surface
conditions. The generation functions so determined are used to
calculate electric intensity of the interference field near the line.
An empirical formula [2] for generation functions, based on the results
of cage and line tests on a large number of line configurations, was
established.

In the comparative methods, a well-defined Rl field intensity
measurement, which includes the combined cffects of Rl generation and
propagation is used as reference value. All comparative method
representation of the interference field intensity are expressed as the
sum of the Rl reference value and correction factors for gradient,
diameter, bundle, distance, frequency, and foul weather. Comparative

method can be found in numerous literature [20-~25].



The basic advantage of the analytical method is the flexibility.
It can be used for any line configuration even unusual ones. Two
particular advantages for the comparative method of analysis is: (1) The
coefficients and constants appearing in the several correction terms may
be determined using operational or test transmission lines rather than
specialized laboratory facilities, and (2) the physical processes
contributory to radio interference generation and propagation are
individually identified.

However, the RI snalysis methods, either analytical method or
comparative method, do not entirely explain the difference between the
measured RI fields of lines, nor the substantial fluctuation in level

which have been obtained from a given line in the course of time [26).

B. Problem Forsulation

Radio interference, generated by corona discharges, is caused by
the movement of the space charges in the electric field in the vicinity
of conductor surfaces of high voltage transmission lines. The corona
discharges are due to a high electric field in the vicinity of the
conductor [14,18]).

Corona sources are known to be random both in magnitude and
repetition time [7,9,10,13,14,19,27]. In most of cases, the corona
currents injected into the conductor surface of a transmission line have
been represented by the spectral density to deal with the randomness of

the corona generation. To sisplify the analysis, corona generation has



also been assumed to be uniform along the line and represented by &
constant value ([14,15,17,18,19].

However, spectral density of corona generation has meaning only
when the corona generation has the property of at least wide-sense
stationarity. Therefore, without developing the statistical model for
corona generation, the power spectral representation for corona current
would be incomplete and probably inaccurate. In this connection,
physical and analytical models of these corona processes appear
necessary.

In 1956, it was discovered [28) that it was not the imperfection
of ACSR conductors but the airborne substances which produce the noise
level of EHV lines during fair weather. Tseng-Wu Liso and N. A. Hoglund
concluded [29) that the radio noise level during fair weather depends
primarily on the sources of plumes not on the metal protrusions of the
conductor material which will give only glow-type corona at the system
operating voltage. While in the glow condition even with many sources
the radio noise produced is generally very low. It has also been found
[29,30] that each positive streamer repels other streamers to form the
distinctive plume shape. Consequently, the assumption of uniform
distribution of corona generation along the line appears inaccurate in
the RI analysis. Therefore, discrete random distribution of corona
generation would be more suitable in the RI analysis rather than uniform

distribution.



C. Research Objectives

The purpose of this study is to determine the statistical nature
of RI generation, propagation, and reception. The specific objectives
of this research may be summarized as follows:

1. Determination or postulation of the statistical properties
of radio interference generation such as frequency, mean
peak-amplitude, and wvaveform.

2. Solution of the transmission line squations with random
sources in time and space based on stochastic methods.

3. Determination of the received readio interference field
based on random corona scurces in time and space.

4. Determination of the relationship between the theoretical
random parameters and RI levels cbtained from empirical

formulas, specially generation function.

D. Research QOutline

To achieve the above objectives of this work, the primary focus is
the establishment of a stochastic model to predict radio interference
field caused by corona discharges on high voltage transmission systems.
This requires the application of modern statistical methods to random
phenomenon, corona discharge, which influence the design and operation
of high voltage transmission systems.

Corona discharges are basically random both in time and space.
Phenomena, or processes, of this kind are characterized by the



unpredictable changes in time and space: they exhibit variations from
observation to observation which no amount of effort or control in the
course of a run or trial cen remove. However, if they show regularities
or stabilized properties as the number of such observations is increased
under similar conditions, these regularities are called statistical
properties and it is for these that a mathematical theory can be
constructed. Physical processes in the natural world which possess
wholly or in part & random mechanism in their structure and therefore
exhibit this sort of behavior are called stochastic processes. Since
corona generations in the high voltage transmission lines in part
exhibit some regularities with regard to radio interference field, they
may be represented by mathematical description as stochastic processes.
The necessity of s;otistical approach stems, of course, from the fact
not only that it is impossible to exactly specify the characteristics of
corona generation but also that the very laws of nature are themselves
idealization, which ignore all but the principal characteristics of the
model and of necessity omit the perturbations. Even then, a detailed
application is often unworkable because of the inherent complexity of
the system, 80 that a statistical treatment is productive.

This work is divided into seven Chapters and two Appendices. The
first chapter starts with an introduction to the importance and
prediction methods of radio interference analysis in power transmission
engineering. Corona discharges on high voltage line are responsible for
the power loss and radio interference. In the published literature



[{2,3,146-26], two formulations to predict RI level are found: analytical
and comparative methods. Brief discussion of these RI analysis methods
is presented. However, these Rl prediction methods, either analytical
or coupc;atiVQ method, do not entirely explain the difference between
the measured RI fields of lines, nor the substantial fluctuations in
level which have been obtained from a given line in the course of time.
This may be caused by inaccurate corona generation model made in each
method. Thus, it appears necessary to develop & rigorous statiscical
model to predict the Rl fields caused by corona discharges on high
voltage transmission systeme.

Chapter 2 presents the first and second moments, specially the
concept of power spectral density of a stochastic process. Since the
most of the contents in this chapter are well-presented in the Chapters
3 and & of [31] and in [32,33,34), only results and simple descriptions
will be presented. For many applications, Fourier transform turns out
to be the appropriate device for treating the steady-state conditions.
It is shown that any aperiodic random disturbance such as corona does
not possess Fourier transform in the usual sense. The concept of
spectrum is broadened in order to deal with corona discharges from the
frequency point of view in the steady-state. Based on this broadened
concept of spectrum or Fourier transform the average power density of
any random process is represented by the power spectral density.

Chapter 3 starts with the reviews of the basic characteristics of

corona discharges required in the stochastic current modeling. It is



presented that only pulsative forms of corona discharges are responsible
for the RI fields of concern. Thus, the discussion of corona is
confined to pulsative forms of corona. The rest of this chapter is
devoted to & stochastic corona current modelling which determines or
postulates the statistical properties of radio interference generation.
A rigorous statistical model for corona current is proposed. Based on
the proposed corona current medel, the power spectral density of single
corona current source has been evaluated. Upon some assumptions, it is
proven that corona current is a at least wide-sense stationary process.

Chapter 4 deals with stochastic analysis of RI propagation and
reception for single-conductor transmission line terminated with
arbitrary ispedances at two ends. For any transmission line, the phase
currents and line to ground voltages are related at any points of line.
A rigorous stochastic analysis is presented to obtain transmission line
equations of single-conductor line subject to random corona. Solution
of transmission line equations yields a specific member (sample
function) of ensemble interference voltage process. The ensemble
property of this redio interference voltage is represented by the power
spectral density of process. At an observation point in the vicinity of
line, the interference field strength is then computed from the
electrostatic gradient of the total interference voltage. With the help
of Wiener-Khintchine theorem mean (ensemble average) square radio

interferonce field is derived.
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Chapter 5 is basically a application of the stochastic RI analysis
developed for single-conductor line to sctual three phase line. Similar
analysis as in the case of single conductor is applied to develop
transmission line equations. Transmission line equations are ususlly
composed of three sets of coupled differential equations. The solution
of transmission line equations is carried out using the theory of
natursl modes in which the voltage and current are expressed in terms of
modal components by means of modal transformation matrices. The main
advantage of this modal method is to decouple the coupled transmission
line equations. In this chapter only a special type of line which
terminates both ends in networks producing no or negligible intermode
coupling is considered in order to avoid extresme difficulty in the RI
propagation analysis. In this case, the propagation of each mode is
analyzed as in the case of singe-conductor line having same
characteristic impedance, propagation constant and terminal impedance
for each mode.

Chapter 6 connects the random parameters generated from the
stochastic Rl analysis to the RI levels oktained from the
empirical/semi-empirical formulas, specially generation function. To
predict RI level with the developed stochastic Rl analysis method, the
random parameters generated by this method must be determined by a set
of experiments. Since considerable amounts of Rl measurements have been
made on short full-scale single- and three-phase lines as well as on

operating lines, however, the best way to determine random parameters is
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to utilize the considerable amount of existing RI measurements, instead
of a new set of experiments. In this connection, the power spectral
density of corona generation is related to the generation function.

Chapter 7 includes results of Rl field calculations using a
developed digital algorithm (listed in Appendix I1) based on the
stochastic Rl analysis for different parameters which affects the RI
levels. In order to demonstrate practical applications of newly
developed stochaatic Rl anelysis, radio interference field is calculated
for a single-circuit three-phase horizontal 343 kv transmission line.
The effects of different parameters on the radio interference level are
compared.

Chapter 8 is devoted to conclusions. The principal contributions
vhich the stochastic RI analysis makes are presented.

Appendix 1 reviews some of probability theory and basic concepts
of random variables and stochastic processes required in Chapters

2,3,4,and 5.
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I1. STATISTICAL CONSIDERATIONS

The purpose of this chapter is to present the background materials
required in subsequent chapters, specially the concept of the power
spectral density of a stochastic process. Most contents in this chapter
are well-presented in Chapters 3 and & of ([31}. Therefore, only basic
definitions and results of the Fourier transformation and the power
spectral density of a stochastic process which are needed in the
subsequent chapters are presented. The statistical preliminaries which
are needed in this chapter and the following chapters are reviewed in

Appendix I.
A. Fourier Transformations

Let g(t) be & real function defined over (-= < t < «), and
absolutely integrable, then the Fourier-transform pair of g(t) is
defined as

Fig(t)) = I e 3¢y dr = g(w) (2.1)

with

jut

F'l(g(u)) = g(t) = I® V" g(0) dt1.

Suppose g(t) = y(j)(t), some suitably bounded member of an
ensemble, in the observation interval (0,T), so that g(t) = y(j)(t) =
y(j)(t) in (-»,e), with zero outside the region (0,T). Then, Eq.

T

(2.1) can be applied to get
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£ = Fly D0y = 1T WD e) ae
T 0
and as long as T is finite, this transform exists in the usual sense.
However, when random varisbles are dealt with, it should be
observed that P(y(j)(t)) = lin P{y‘j)(t)) does not exist since
T T

y(j) does not die down to zerc as t * £ « with sufficient rapidity to
(3

ensure convergence, nor does y possess & definite pericdic structure
which could be interpreted as a line spectrum in terms of & functions.

Strictly, then, it is observed that the Fourier transform of any
steady-state aperiodic disturbance does not converge to a finite limit
for all frequencies. Therefore, it is needed to extend the usual
notions of the Fourier transform to include random function where the
familiar treatment fails.

Consider 8 member y(j)(t) of an ensemble y(t) such that y(j)(e)
converges. This means that lim y‘j)(z) * 0 sufficiently rapidly so

Tt

that

1y de < -
then, by Plancherel’s theorem, we have

1 v e)? g = 1 1y P @)1 af < - . (2.2)

e .

When the disturbance y(j)(t) vanishes outside some interval
(-T/2,T/2), an average power, or average intensity, over the interval in
question, can be defined according to

y “T/2 - T 0
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where y(j) = y(j)(t) (-T/2 €S t £ T/2) and is zero outside this
T

interval. From Eq. (2.2), this can be written in still another form,

P (1) = s° ly(;)(u)l‘l‘l' af,
y e

wvhere y(j)(u) = ° y(j)(:) o'j"‘ de.
T - T

Defining,

vy = 23Dy,
y

we have

Py = 55 w0, ar
y y

so that w(j)(u)T may be called the average power density of y(j)(:).
. y T
f y‘j)(t) is a member of an ensemble y(t) so that y(j)(t) does

not die down properly to zero as t * : «, average power P(j)can still
y
be defined as the limit T » = of PV (M), i.e.,
y

P = 1w sm v P, . (2.3)
¥y T 0 7

It is shown (page 140 of [31]) that, although lis P30 (T)

T'e ¥y
exists, it is not true lim H(j)(u)T approaches a definite limit.
T*e ¢
In face, Lim WD)y = @) is usually bounded buc

Tte y y
oscillates indefinitely as T * w.

An immediate consequence is that the order of the limit and
integration in Eq. (2.3) cannot be exchanged. More important, this

result indicates that the power spectral density H‘. in order to be
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suitably defined in the limit T * «, must be sxpressed as a property of
the ensemble as a whole.

Consider, accordingly, an ensemble yT(:) which is obtained from
the ensemble ¥y (<= < t < =), wi;h E(y') < « for every finite interval
{t), by truncation, so that Yt vanishes everywhere outside (-T/2,T/2).

Fourier-transform pair of ensemble yr(:) is defined in the mean
square as follows:

yp(w) = Ny.r(:)) - IT':IZN:) o3V e

- jut

=" yp(t) @ de , um2wf (2.4)
t ]

with the usual inverse relation

yp(e) = P Hag) = 1° ypte) o ar

B. Power Spectral Density
Define
* R
\ly(n),r = E(2/T I7(¥) yop(w) }= 2T IF(¥7)|’ . (2.5

Definition of Fourier transform in the mean square guarantees the
existence of wy(u)r. Substituting Eq. (2.4) into Eq. (2.5), we have
T/2 , = -je(t, - t,)
!'f’;,(«).r = 2/7T {le ] y(tl)y(:z) e 1 2 dtldtz

= T/2 -ju(e, - ¢,) )
2T {le J ”y(tl“z) e 1 27 duyde, , (2.6)

where, ”g(tl"z) = cll(tl,tz) = y(tl) yitz).
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The Fourier-transform of the power density Ry(u)T. as defined over

the ensemble, is

- Jot T/2 o =ju(t -t -t)
{. Uy(o)T ] df = 2/T {le 1 Hy(:l.:z)d:ldtz {. e 1 "2 "dt

T/2
= 2/T 177 M (c,,8,-t) dt
a2 ¥V !

since /™ «3¥(52°%1*) 4¢ u TURTRYY
ey

At this point, it is assumed that y(t) be a wide-sense stationary

process so that Hy(tl.tz) - Hy(t.l -t Then, Eq. (2.6) becomes

2)

T/2 . <ju(e, - t,)
wy(u,).r = 2T {le ! ”y“l :2) ° 1 2 “1"‘2
T

=2/
-T

.j“
My(x)r e dx 2 0
where, u,(x)T = H’(x) (1 - |x}]/T). Now if H,(x) is continuous,
- - Jux
;:: Hy(u)r =2 {. uy(x)c dx = 2 F{Hy(x))

= Vy(u)_

The power spectral density Hy(u) of a random process y(t) is
defined by

V. (w) = lim W (w)y = lis e (w))
= lim 2/T Iy (0))?
Tte

where, this average sust be carried out before the limit is taken.
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In summary, the power spectral density and the sutovariance

function of y(t) are each other's Fourier transforms, i.e.,
Vy(u) =2 P(My) y @ = 2uf (2.7)
Hy(:) = 1/2 rtwy) . (2.8)

Eqs. (2.7) and (2.8) are known as the Wiener-Khintchine theorem.

This theorem is easily extended to complex process y if we define

ny(r.) = k(y(tl) y‘(tz))

C. Spectra and Autocorrelation Function

In the physical world, a single member alone of the ensemble y(t)
is normally available. But if the process is ergodic, the Wiener-
Khintchine theorem can be used to determine the ensemble spectral
density of the process from the appropriate time average on this single
member function.

To shew this, define the autocorrelation functicn R(j)(t) of &
y

mesher y‘j)(t) of the ensemble y(t) as follows:

(3 . .
R (v) = lim 1T JY/? y"’(;oxy‘-"(:o v 0 deg,
y Trw -1/2

where, t = ‘2 - :1 . From the definition of the Fourier transform, we
have
&) (i) »

— =~
Ry (t) = _Li: T {. vy (t:o)xi'T (to +t) dto
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« B
= e 1/2 /"W (£) & af . (2.9)
Te - ¥
Next, take the ensemble average of both sides of Eq. (2.9) to get
§))
R, (£) = 1/2 /" Lim V" () oI¥° dt
4 - e 7
= !; wy(u) cos(wt) df .

If v is wide-sense stationary,

(J) )
I‘W2 Yt (to)yr (:o +t) dto

R (t) = lim 1/T
y Te <T/2

=¥ (¢) lim 1/T JV/2 dey = 1 (c) .
V' e -T/2 y

Now if y(t) is ergodic,

RO ) = (e vith probability one
y

so that the Wiener-khintchine theorem becomes finally

g = 172 7w )
v y

V() = 2 F(R2(e))  with probability one.
¥



19
111. STOCHASTIC CORONA MODELING
A. Properties of Corona « Literature Review

In the nonuniform field various visual manifestations of locally
confined ionisation and excitation process can be viewed and measured
long before the complete voltage breakdown between electrodes occurs.
These manifestation have long been called " coronas ".

A precise, physical definition of corona discharge is (10} : A
corona is a self-sustained electrical gas discharge where the Laplacian
(geometrically determined) electrical field confines the primary
jonization processes to regions close to high-field electrodes. A DC
corona is called positive, negative or bipolar according to the polarity
of the active electrodes [10]. AC coronas are power frequency fed in
high ;olta;c power lines. Sometimes corona are quite noisy both
acoustically and on a wide range of radio and television broadcast
bands. For example, high voltage power lines may exhibit corona
discharges that cause considerable radio interference and acoustic
noise.

The modes of positive corona in air are onset pulses, Hermstein
glow, and steamers. The negative corona modes are Trichel pulses,
pulseless glow, and negative streamers (8,9,10].

It has been known that only pulsative forms of corona can produce
significant radio interference on the high voltage transmission systems

[8,11]. In long gap, the highest noise level is produced by positive
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streamers under AC excitetion. The positive streasmers under DC voltage
give a slightly lower level, Trichel pulses a much lower one.

Therefore, it seems reasonable to confine the discussion of corona
discharges to the positive pulsstive forms of corons as far as the radio

interference anslysis is concerned.

1. Onset pulses

The sudden appearance of corons pulses at the threshold having
magnitudes much higher than the ground current marks the formation of
streamer (or burst pulses) discharges. The pulses occur randomly and
intermittently.

The current pulse of these streamers has a rise time of the order
of 20 to 40 nenoseconds. They decay to & hslf-pesk velue in about 100
nanoseconds [8,9]. The awplitudes of onset streamers range from a few
tenths milliamperes in high divergent fields up to & few hundred
milliamperes at large electrodes [8]. The repetition rate of onset
streamers increases with the voltage up to a certain critical value at
which the negative charge developed chokes off this form of discharge.
Rough estimates have indicated that the frequency incresses with voltage
from zero to a peak of 3000 to 4000 pulses per second, after which the

pulse frequency declines but its duration increases [7].

2. Streamers
This intermittent mode develops fros the glow when the field is
adequately nonuniform. Given a certain anode, the gap spacing must be

large enough so that these streamers can materialize.
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The frequency of occurrence of streamers ranges from 1000 pulses
per second near their onset to 10000 pulses per second just before spark
occurs [9].

Their amplitude is of same order as the amplitude of the onset
streamers. The length, amplitude, and repetition rate of pulses grow
with the voltage.

The observed form of streamer current pulse is the function of
streamer length, smplitude, and field configurations. The rise times of
streamer discharges observed on transmission lines and apparatus are
usually in the nanosecond ranges (below 100 nanoseconds) ([8).

The shape of the positive pulse in the high voltage transmission
lines is of the following double exponential form [35,36):

£(t) = A(e™3% - oP%y .1

In the relation (3.1), the parameters A, a, and b depend upon the
high voltage line geometry, and veoltage as well as the atmospheric
conditions.

Perel'man and Chernobrodov [37) satisfactorily approximated the

shape of positive pulse by the formula

(1 - xr)

i(ft) sAxte (3.2)

where X is the amplitude of the pulse, and x = (1.0 - 1.4)x107

Formula (3.2), which is a special case of expression (3.1),
provides a simpler expression for the frequency spectrum of the imspulse
than formula (3.1).
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3. Pulsative corona discharges under alternating fields

¥hen alternating potential is applied to the electrodes, several
differences will be observed in comparison with the corona in the DC
field.

There are two primary sources of these differences [8,9]:

1. Oscillation of the voltage.
2. Oscillatory movement of the space charge developed by
corona.

The first phenomenon results in continuous changes of corona
generation conditions. Thus, several modes may appear in one voltage
cycle. The second phenomenon exists only in gaps longer than the
distance of the crossing during the period from corona extinction to the
voltage decrease to zero. The critical distance in uniform field, at
power frequency, is about 1.2 m. When the critical distance is
exceeded, the negative-ion space charge will suppress the development of
onset pulses. If, under the alternating field, the negative ions do not
have ample time to escape to the electrodes, they will accumulate and
force the steady glow to materialize.

The effect of the negative ions on the development of the
breakdown streamers during the positive half-cycle is not very clear.

In fields of moderate gradient (spherical and cylindrical electrodes),
the onset of the breakdown streamer is lowered, whereas in highly

divergent fields, the reverse seems to be the case.
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B. Stochastic Corona Current Modeling

In practice, corona sources are distributed randomly along the
length of the line. At & given point on the line, the corons current
induced in a transmission line by corona discharge varies randomly with
time, and it may be considered as pulse trains with random shapes. Such
currents are generally best described in terms of stochastic processes
in time and space. In this section, a stochas-ic model is thus proposed
for the corona currents. Since only positive pulsative forms of corona
can produce significant radio interference on the high voltage
transmission systems [8,11], it is sufficient to consider only pulsative
positive corona as far as the radio interference analysis is concerned.

Let J(x,t), 0o $ x $ L, =« < t < =, be the corona current injection
at time t and a point x along the transmission line. At a specific
location (x,t), J(x,t) denotes the random current with the value in R =
(=, =), and can be called a random variable mapping from £ to R, where
Q is the sample space consisting of all possible corona generations.

A stochastic process J(x,.t) may be seen as an indexed family of
random variables. The collective outcome of all the experiments
comprising randoms process J(x.t) is denoted by J‘j)(x.t). the
realization of the stochastic process J(x,t). The outcome of the random
variable associated with any location (x,t) is referred to as the state
of the stochastic process at that location.

At a given time ‘0’ J(x.to) can be modeled by the Poisson process.

If it is assumed that the corona current is so localized to ome point on
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the transmission line that it can be represented by a point current
source, the corona currents will inject into the conductor only at
discrete points, for example, Xys Xgaeees Xy Here, xj's. j=
1,2,...,N, may be called the arriving points. The number of corona
sources N is of course random process mapping from Q to (1, 2, ....).
Let N(ax,xz) be the process denoting the number of the corona sources on
the line section (zl.:z). where 2., 3, ¢ (0, L]. Since N(zl.zz) can be
assumed to be independent of the number of corons in an interval prior
to the interval (zx.zz). and the probability that a certain corona
occcurs in a certain interval can be thought of independent of where the
interval situated, N may be modeled as a Poisson process. It is noted
that N depends only on the length of line, so that N(zl.zz) can be
replaced by N(zl-zz).

At a given point Xg J(xo.t). s ¢ t < », may be considered as a
stochastic process in time with a value in R* = (0, +»), and denotes
pulse trains. The shape and repetition rate of corona pulses comprise
of random parameters which allow us to treat a variety of corona sources
that may be operating concurrently but may arise from different

mechanisms.

Assusptions:
1. Corona pulse trains are almost periodic in the sense that
only one pulse can exist in each period interval.
2. The peak-value of each pulse varies randomly from pulse to
pulse.
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3. The pulse shape can be represented by a function of some
random parameters.

4. The duration of each pulse is so short as to prevent
over lapping between periocd intervals.

$. Pulses vary in position within the period interval, i.e.,
pulses have leading edges such that the period interval is
not exceeded.

6. Corona current is so localized to one point on the
transmission line that it can be represented by a point

current source.

Let J(x,t) be the corona current density defined on [0, L] » (<=,
=), where L is the length of transmission line. A representation Jr(j)
of corona current density J(x,t) truncated in the interval (-T/2, T/2}.
which consists of exactly 2N periods, each B seconds long may be

represented by

(1 N(L) M () (3
J (x.t)T = uil !:ly' u'(t “-mB ~ € ) 8(x - xn)
fOt X & [onlﬁln te ['T/Z;TfZ]. (303)

where:
u.(:-ns-:') = u.(:) formB + ¢ S ts (w¥1)B
N(L) : the point process denoting the number of corona
sources on the transmission line [0,L].
y_ : the stochastic process denoting the peak amplitude

»
of the m th pulse in time.
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€, ¢ the stochastic process denoting the leading edge
of the m th pulse in time.

X, ¢ the stochastic point process denoting the position
on the transmission line where the coronae occurs.

8(x) : distribuction function satisfying

) £(x) dx = f(x

{" 8(x-x j>

- J
for any continuously differentiable f(x) which dies

down quickly as x goes to 2 e,

In equation (3.3), it should be noted that N(L) and xn's. n=1,
2...., are actually the functions of time, and tn's are the functions of
%. In the followings, however, the statistical independence between time
parameters and space parameters will be assumed to make the spectral
analysis of J(x,t) more feasible.

Under certain assumptions, J(xo.t) can be easily shown to be a
wide-sense stationary process (section D). J(xa,t) is thus assumed to

be a stationary process in the following section.
C. PFower Spectral Density of Pulse Trains

At a given point Xy on the line, a realization of stochastic
process J‘j)(t) on time (-», ») is the summation of the pulses which has
the properties assumed in the preceding section, and can be represented
by
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1y =1 y:j)un(: - nb - ::j)). (3.4)
nN%ew
In this section, it is attempted to derive the power spectral density of
J(xo,t) which will be useful in the following chapters.
To obtain the power spectral density NJ(u) of J(t), start with &

member of the truncated ensemble

() (3)

N
J‘“m.r =% y u(t-nB-c) (3.5)

n=-N
where un(t).‘x is unity, un(t) vanishes outside an interval t < B and 1t
is the maximum duration of a typical pulse. Similarly ¢ is also
bounded, so that ¢ is less than B - t to prevent overlapping between
period intervals. The tighter restriction of strict stationarity will
be imposed on the process ¢.
If it is assumed that J(j)(t)T is absolutely integrable, {.e.,
17 13yl de = 172 ) D)) e < -,
e -T/2
Fourier transform can be defined in the mean square as follows:
N D (1)
FI (0 = 3@y =KL y (¢ B - ))
T T n n
n=<N
N ()

= uf-uy" un(u) exp{-ju(nB + e,“” )},

where, u () = P(un(t)) and v = 2%f.
From the definition in Chapter 2, the power spectral density of

process J(t), = < t < @, can be written as
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vy = e B2 Pwrm (3.6)
T™e
In the above equation, it must be noted that aversge must be carried out
before the limit is taken. The squared asbsolute value lJ(j)(u)Tl' in
the Eq. (3.6) is
N
‘J(j)(ﬂ) " =l y (.}) '\l (“)'l + : t y(j) (j)u (“) “ (U}

n--N n, awN "
nin

x oxp(-ju(ni-nﬁ*c:j)-tij))). (3.7)

Substituting Eq. (3.7) into Eq. (3.6) and noting that T = (2N+1)8B,

we have
N

2
Vi) = linsfe g1 1y ()
b (zm;n e

RPN OX T

n,om-N " e
n'm
% uu(u) n:(u) exp{-juwB(n-m) ~ ju(z;j)-z:j)))l. (3.8)

The first term in the bracket can be computed ecasily provided that

Yy, are independent of random parameters of uu(t) as follows:

N .
2 (»? 2
;f:(zsﬂ)a E{ ‘,N’u Jug (@17}
N
(Nt 2
;ﬁ"(zml)s oy, lun(w)l
= lim y ju_(w}? L1
e n N awTE
% fu()? . (3.9)
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In the derivetion of Eq. (3.9), it is assumed that y and u are
stationary stochastic processes.

To rcdgco the second term in the bracket of Eq. (3.8), it will be
further assumed that random parameters of un(:) are independent of those
of un(:) when n # m, and y and ¢ are mutually independent. Then, it can
be reduced as follows:

llnm E[nl':.uy“) (J)u (w) u *’(u)

% exp(-jwB(n-m) - ju(c(j)-ctj)))l

! t ‘-jul(n-n)

n.--N
nis

el - {1y

1r ‘j) (3)u (u) u (u) li-(z

» E(e

jukB
(’) jotey)? 2 e ;3'355%733

k‘ LTy

k#0

. 1 et D et
-

=5 @E)? T B(ei¥(E27% )50 (3.10)
kS~

k#0

Substituting Eqs. (3.9) and (3.10) into Eq. (3.8), we get

W@ =% (FTR@I? + GIE@IT ¢ JHBIEED
k¥ e

k#0
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Now it can be shown that E{ oj"(‘2°'l) )u is negligible at high
frequency which is the main interest in the RI analysis. Let us assume

that the epochs €, ore uniformly distributed in the interval (B/2-t) so

that
!l(:) = l/to for 0S¢ £ B/2-1

wvhere ll(:) is the probability density function of ¢.

Then, the expected value of cj“<‘2 ° ‘1) is

Bl «J¥(%2 " 81 ) a jg(e7I¥))?
t
T e, o 39 4g)2
0
=2 sin’utoltuto)’

< Zl(uto)' .

The power spectral density VJ(U) can be, therefore, approximated

practically by

HJ(u) = 2/B E(y?) E(ju(w))?) . (3.11)

D. Stationarity of Pulse Trains

Consider pulse trains J(t) represented by Eq. (3.4). It can be
shown that pulse trains J(t) is a wide-sense stationary process if the
followings are satisfied:

1. ¥y, e, and u are identically distributed stochastic

processes which are sutually independent.

2. uu(t - 1) are essentially zero except for small t-t.
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Under above assumptions, it can be shown that the mean value is

constant and the variance of J is the function of t-t in & following

vay:

B(J(t)) = E( T y u (t-nB-c)) =1 }';"T‘T'Sun t-nb-c_
nSen

=51 {:l: u (t-nB-c ) f(e ) £(u ) de du_

e /U™y o(q) de ) £(u ) du
* . t'(”l)' n q“ n n n

-;-1"( 1%(q) dq ) £(u) du

-;-l" QCu) £(u) du
.;.q ,

E{J(t) J(t-1)) = E(L ’n‘n“n“"""n’ ua(t-nl-z.-t))
N,
y' 7 =B
"i, r 1/ Ioun(t-nl-:n) un(hna-:n-l) “”n) dzuduu
N%=w =
yz - - l
+_a, nfp-.!.‘l- IOI un(z'nl':“) u'(btmb-t’) f(nn.u’)
n¥m

% dznd: pd“nd” -

- t-nB
: My u (q) u (q.-7)) f(u ) du
peee s te(ntl)B® ®* B % n n

7 « t-nB t-1-mB 2
+7 111 ! u (q ) u (q ) £ (u)
5 e te(mtDB tot-(as)B P P B B

% dqudq'dundu.

I Ju(q) u(q-1) dq £(u) du

hd 4

o
=Y
B

wjuJ

+ 31 111 u(q) u(g") £(u) dg dg’ du du’
B

(3.12)
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= P(t) . (3.13)
wvhere

Q= /" u(q) dq

f(c) --i— when 0 £ ¢ £ B,

Thus, it is shown that J(t) is a wide-sense stationary process

under above assumptions.
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IV. RADIO INTERFERENCE CAUSED BY CORONA ON THE SINGLE CONDUCTOR LINE

A. Introduction

The RI level of transmission line depends on two principal
calculations: the generation of RI near the conductor and the
propagation of the interference along the line [19].

The RI generation is generally characterized in Chapter 3. The RI
propagation depends on the electrical characteristics of the line, the
line length and the impedance characteristics of the line terminations.
The solution of transmission line equations with suitable boundary
conditions is presented for the Rl propagation calculation.

The case of the single-conductor line is treated in this chapter
for the sake of simplicity and completeness. Detailed analytical
expressions presented in this case, however, are not to be found in
published literature and are therefore to be believed to be very
original and useful. Single-conductor Rl analysis not only provides the
general principles of Rl analysis, but also is directly usable in the
sulticonductor analysis.

Application of the proposed analysis to some practical line

configurations will be followed in later chapters.

B. Transmission Line Equations

Consider a single-conductor transmission line which has a
resistance per unit length R, inductance per unit length L and shunt
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admittance per unit length C. A short length of line Ax, is shown in
Fig. 1. J(x,t) is the corona current per unit length injecting into the
conductor, which is the random field in space and time.

With polarity marks and current directions as shown in Fig. 1,

Kirchhoff's voltage law and current law give

AV = -Rdx I - L dx 3l/3¢
Al = <C dx 3V/3t - J dx . (6. 1)

In the limit as 4x * 0, Eq. (4.1) becomes

W/ x= <R 1 <L A/
M/ = -C ¥/t - J(x,t) . (4.2)

Let us consider next an ensemble J(x.t)T which is obtained from
the ensemble J(x,t), = < t < w», with E(J?) < « for every finite
interval {t), by truncaction so that JT vanishes everywhere outside
(-T/2,T/2). Then, the transmission line equation (4.2) can be written

as follows:

QVTIOx #=~-RI,-L GITIIK

T
OITIOX = «C aﬁrfit - Jr . (4.3)

where VT and IT are the voltage and current induced from J.r when we
consider only the corona events in ~T/2 £ t £ T/2.

In the next step, JT’ VT. and IT are assumed to be absolutely
integrable in terms of t for ~T/2 S t S T/2, {.e.,

T/2

1 £ jdt <o |, £ . =J_,V_ ,o0rl (4.4)
“1/2 T T T 7T T
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FIGURE 1. Equivalent circuit of transmission line subject to corona
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then there exist Fourier transformations of VT’ IT’ and JT in the mean
square.
Taking the Fourier transforms in terms of t on both sides of Eq.

(4.3), we have

3V(x,u)rlix = <« 2 I(x.u)T {&.5)
Ol(x.u)Tlax - -y V(x.u)T - J(x.u)T (4.6}

where IT(x.u). f=V, I, or J, is the Fourier transform of l(x,:)T( z

and Y are line parameters defined by

Z=R+ jul
Y= juC . 4.7
In the derivation of Eqs. (4.5) and (4.6) the system is initially to be

at rest, f.e.,
V(x,=») = I(x, “») = 0.0 . (4.8)

Equations (4.3) and (4.6) are the transmission line equations for
the single-conductor line subject to corona in -T/2 S t £ T/2. It
should be noted that J(x,w)_, V(x,«) , and 1(x,u) are not defined in
the usual sense because they are not integrable in «= < t < ». Hence,
the Fourier transforms of V(x,t) and I(x,t) are not defined in the usual
sense. However, the definition of Fourier transform in the mean square

sense guarantees the existence of
V(g = E(2/T y(o)y 57 (@), for 7= V() 1p(x,0),

and in the limit as T * », Hy(w). is defined well.
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In the following section, therefore, it is attempted to solve
Eqs. (4.5) and (4.6) for specific boundary conditions, and to find the
power spectral density Uv(u) which can be related to the radio

interference field.
C. The Solution of Transmission Line Equations

Let us consider a single-conductor line AB of length L subject to
corona discharges. lLet it be terminated in arbitrary impedances zl and
22 at two extremities of the line. The line is assumed to have
following characteristics:

Z : series impedance per unit length, U/m .

Y : shunt admittance per unit length, mhos/m.

Zc = /%Z/Y : characteristic impedance, .

I=/2Y=a+ jB : propagation constant.

@ : attenuation constant, nepers/m.

B : phase constant, radians/m.

Combining Eqs. (4.5) and (4.6), we have
2 ? . x*
d V(x.u),idx ¥ V(x.u)T =2 J(x.u)T . (4.9)

I1f a specific member J(j)(x.u)T of the ensemble J(x.u)T is considered,

Eq. (4.9) can be written as:

For a single source at x = xj. J('i)(x.m).r is

. N .
Wy = s -xp e ylue oo (4.11)
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1f we let
N
(3) - (J) - . 3
f (t)T nz-N yn un(t nB ‘n ),
then

J(j)(x.u)T =8k -2 F “(j)“’r’ = 8(x - xp) t(j)(u)T . (4.12)

Substituting Eq. (4.12) into Eq. (4.10), ve have a second order

differential equation
d'v‘J’(x.u)T/ax' -9 v"’(x.u), =z t‘”(u)T Sx - x) . (63

In order to solve Eq. (4.13), divide the line into region - I, to
the left of the point xj = £ and II, to the right of the point { - and
apply the socurce conditions to join the solution for region I with the
region 1I.

Both region 1 and 11 are then source free. The solutions for both

regions have therefore the forms as follows:

Tx

V‘j)(x.i)r = 1A e"“ +Be for 0 § x < £

(&.14)
LS for L <xsL

1‘3’(x.l), =fcae™-ne™yz, forosx<t

(4.13)

¥

ce¥™ .p e")/zo for f <xsL

where V(j)(x.i)r is the volrage at x when a point source is located at x
= £.
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At the point x = 0, we have conditions
2, = - v o.01W 00,00, = 2 (1450701 - 5
where the symbol

b " A/B = (Zx - zo)/<zl + 20)

The solution for region I can therefore be written in the form

«2¥x

v (,brp = 8 o™ (145 &7

Ix -2

19005 = 8 ™ (5, 3 - 1)z,

In & similar fashion, the condition at x = L {s

1)) (5 - .
z, = Vw010 = 25 (14 9,010 - 5y

2L

vhere, P = De" /C = (22 - zo)/(zz + Zo)

The solution for region 1l can therefore be written in the form
v D= c o™ (145, 2T D)

1P ece™ (1 -y, F1x Dy

Now apply the source conditions at x = §, f.e.,

D@+ 0.0, - 140 - 0,00, = - (P,

v+ 080 - v - 000 =0 .

The solutions for the four unknown constants are, therefore,

(4.

(&.

(&.

(4.

(4.

(4.

(.

(4.

(4.

16)

17)

18)

19)

.20) .

21)

22)

23)

24)

25)
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A=p, B

B=-2, ‘(j)(“)r L LIFPEN by LI - LA
C=-12, f(J)(“)T R LIPERN 0 ‘-ZIt) m

D=Cop, o 2L (4.26)

where

2L

A=2(1-0p,0p, e ™ . (4.27)

The constants substituted into the general forms for the solution
in region I and 11, give the complete solution. Thus, from Eqs. (4.18),
(4.19), (4.22), (4.23), and (4.26), the noise voltage at x when a point

source is located at x = [ can be written by:
(j) . =I- (8] ‘ 20§ - L)
v (x.;.ulr zoza f (u)T {1+ Py © }

. (7% - (4 a0 ¢x< L

-Ovple

- Zo/8 t(i’(u), 1+, o 2%,

l(x*l'ZQ))"<‘sL'

P (O S r

(4.28)
Equation (4.28) is the general solution with arbitrary
terminations Z, and Z,. Having obtained the voltage V') (x,E;u)y for
the problem of single corona source, the problem with a genmeral source

distribution can be obtained with a superposition. The solution for the

multiple source can therefore be written as follows:
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v‘j)(x.u)r =X V(j)(x.t;»)r

N
=-2,8 f(j)(u).r T (o VIxxgl e
nel
L TE P B

-t(x+xn)

+p o FQL = Ixx 1)y (4 20

2 1 P2

It is noted that N in Eq. (4.29) is the stochastic process
denoting the number of corona on the transmission line, and t(j)(u}r is
the Fourier transform of corona current at a given point x.

The Fourier transforms of V(j)(x.:)T is therefore the product of
the Fourier transform of corona current at a given point and the factor
which can be determined from the distribution of corona along the

transmission line, the line parameters, and the terminations of line.
D. Power Spectral Density of Noise Voltage

In the present section, such an ensemble property as the power
spectral density which is most important in practical engineering
applications is considered. The power spectral density Rv(x.u) of
V(x.t) will be used to find the average mean square value of the radio
interference field caused by V(x,t) in the following section.

The power spectral density Uv(x.u) of V(x,t) at a given point x is
defined as
V(o) = Lin 2T ev P 0, v *ep (4.30)
Substituting Eq. (4.29) into Eq. (4.30), we get

2
Wy (x,0) = I21? { lim 2 TEG@)L1°)
Ne
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N r »
»EXZX | oxp(-!lx-xnl -1 Ix-xnl)
n,om=N L

+ 1o 1 texpl-T(x,) - 7" (evn))
+ 1oyl texpl-¥(2lox-x ) = ¥ (2ex-x )
* Ipypy ) Texp(-¥(2L-fu=x |} - t*tzn-lx-xal))
+ 2 Re| ptexp(-t*lx-xnl - !(xﬂtm))
+ pzup(-lilx-xnl - t(zn-x-x.))
* pl*pzoxp(-!*(x-xn) - t(2L-x-x-))
+ pypa0upl-¥"Ixex | - ¥(2L-)x-x,]))
+ Iplt'nzoxp(-!*(x-x“) - ¥(2L-|x-x_])}

& 3
+ Ipz"’lcm“ (ZL'X'X“) - ‘(2!0"!'”.')))’!' ("31)

Note that the term in the brace is the spectral density of f(t), and was
evaluated in Chapter 3 (see Eq. (3.11)).

The first term in the bracket can be evaluated in a following way:

N(L) *
EZ 2 cxp(-!lx-x | = % Ix-x-l)
n,n=]
N(L)
= J” II‘.. JL S 3 exp(ctlx-x | ~» l Ix-x )
bt o 0 D.ﬂ'l

* t(xl) t(x “"N) dx d"u dN

- 1 . N
=47 £(N) J7... 07 L exp(-¥lx-x | - 'y Ix-x 1) | A
. 0 0 n,m=1

tdxdx de)dN
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- t LN »
=t Ny {1°...1" 2 oxp(-!lx-xnl -1 lx-xnl) dxl“‘de
- 0 0 n=]

LWL g"‘% (~Tjaex_| = T Ix=x_]) dx dx ) dN
- exp(-¥ix=x_| - x=x cee
0 0 n,a=l n n 172 de
n‘e

-l'

£(N) (%‘I,L oxp(-Flx-x | - !*lx-xml) dx_

N'-N L ,L w
—ir Io Io exp(-¥|x xnl 4 Ix-xml) dxndxm) dN

=17 1) [ gy (2 - @720 L 200,

X - ."(L‘X)lt) dN

N2-N -1
MSLLI

.%‘- (z - "2“ - "ZI(L'S)) + x]l _%_(2 - "‘8 - ",(L'X))ljl. ("32)

The other terms in the bracket can be easily evaluated in a
similar method. The power spectral density of V(x,t) is thus as
follows:

Z r
__Q P \ - '2““ -

«2a(l+x) ~2a(L-x)

< o 17 (-lpy1*) @ - (1-lp,1%) e

~20(2L-x) ~4al

LA MO D “lpyp,l% @

ax_ o g 2l(al¥jbx) |

+ 2 RQ(P,Q.Z p‘ ’ze’zc(!l'x)

-2(¥L-jBx) 2070

- 2 2
+p,(1 Io 1%)e 92!911 e

~2(aL#2iBx) ~z(2¢1.-x*x)n

3 2
+ p,lpzl e 91I92I e

20 e-ztx

+ 3 Inlp, (e72%%- or20(Lox) _ -2¥(L-x),

) + 92(
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+ plpzt.-Z(!L-jBx) + .-Z(nL+jBx) -2 ‘-Zch)
+ 5" (e 200L380) | 203138,
+ pgley) e | 2
+ byloy e 0N, 202aLeT) ),
+ Te%, (12 - % . " T(Lx)|?
+ Iogh? o) | AL,
+ I’l.' I.'tx . .-!(L+x)I,
* oyl 107V T e,
o oy Ret(z - &R L T L) (07
“aylienp & TBO, (o 1L

“¥(L-x)

i Py @ - 29192 "ZUL)

+

* *
Dl*ﬂzfe.‘ *.0 (x*L)) (o ¥(L-x)

(1p, "y W02 p,* o TLH)

¥x, ¥(L-x)
# - -

* *
2} (e' (xs1) | e' x)]j.

where

Welo) = %? lu(w)|?.

(4.33)

(4.34)
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Let the product of |1/A|! and the expression in the outermost
bracket be r(l;x.L,u.t.pl,pz). then the power spectral density of

voltage can be written by
Vy(x,0) = 212,1%/B Ey® Elu(w)|? T(h;x,L,0.7,0,,p,) . (4.35)

Thus, the spectral density wv(x.u) at a given point x due tc corona
discharges on a single-conductor transmission line of length L is the
product of the following three factors:

1. lzol’ which can be determined from line parameters.

2. w‘(u) wvhich can be determined from the pulse shape, peak
value, and repetition rate of basic corona streamer.

3. f(\;x.n.u.!.pl.pz) which can determined from the line
lcngth. the reflection coefficients at the extremities of
line, the number of corona events per unit length, and the
propagation constant of the line.

In a matched line which is an interesting specisl case, the
reflection coefficients 2 and p, are both zero, so that the expression
vv(x.ﬂ) simplifies as follows:

3 - - - -
vyt = Zol” 57 TG | (2 - o720% - o720,
2B

3 - - -
s R 12 - e STy (4.36)
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E. Electric Field Calculation

The analysis, so far, has led to the derivation of the noise
voltage in the power spectral form. This interference voltage can be
connected to the electric field intensity around conductor which causes
the radio interference to the radio placed near the transmission line.

At the present time, the quasi-static method is widely used to
determine the electric field from corona voltage. The electric field
analysis in this section is also based on static electric fields. It
should be, however, noted that for frequency higher than 10 MHz cthe
field intensity must be determined by an exact solution of the Maxwell's
equations.

The cross-sectional view of & single-phase line with ground return
is shown in Fig. 2, when the c;nducting earth is replaced by the image
of the conductor.

Let the electric field intensities be defined as

je

<
-
E e @&

je.

e . {4.37)

zi = 'c

where z‘ and !i are the field intensities due to conductor and the image
of conductor, respectively. The electric field intensity E at a point
P(x,y) is then,

E=E + Bi

= (ecx/di +* eix/di) + j(ec(y . h)/dc + ei(y + h)ldi) . (4.38)



Physical conductor

Image conductor

‘q

FIGURE 2. Cross-sectional view of a single-phase line with ground
return
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The electric fields e and e, are given by
e = q/(2wt°dc)
e, = -qI(Zutodi) . (46.39)

where q is the electric charge due to corona on the transmission line.

In cthe derivation of Eq. (4.39), it was assumed that the field
structure is almost Ttﬁ, fi.e., the electric and magnetic field vectors
lie in & plane (xy) perpendicular to the axis (a2) of the line. In this
sense, e¢lectric field intensities e and e, are only an approximation
(usually a reasonable one for good conductors and for frequencies
concerned in the RI analysis).

The phase voltage V(x.t) and the charge are related as

q ; 2u:V[ln.(2th) . (4.40)
Substituting Eq. (4.40) into (4.48), we have

e = vid, ln,(Zb/R))

o = - V/(di luc(ZhIR)l . (4.41)
The substitution of Eq. (4.41) into (4.48) yields
E=Vx/{ln (20/R)} (1/4 7 - 1/d. ")

+ jV/1n_(2b/R) ((y - h)/dc’ - (y + b)/di’)

e v ie, (4.42)
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Equation (4.42) connects the noise voltage on the conductor to the
electric field intensity at a point P(x,y). The power spectral density
of E may be defined by

wg(x,y,:,u) = (H. (x,y,%,0)" + L (x,y.:.o)')" (46.43)
x y

where

".*(X.VQI;U) = Vv(l.u) (x(l/dc' . l/dx’)lln.(Zb/R))'

V.,(x.y.s;u) = Wy(a.0) [{(y - h)/dc’

= (y + h)/d, "))/ 1n (2b/R)). (6.44)

The power spectral density wz(x,y.z;o) at ground level y = 0,
specially, is given by

Vg(x,y%0,2:0) = & h? wv(z.n)/((x’* b¥)(1n 2h/R)}? . (4.6%)
F. Radio Interference Field

In the preceding section, it was showun that the power spectral
density of the electric field around transmission line could be
determined from the spectral density of interference voltage.

The electric field intensity in the region immediately adjacent to
the antenna of a radio receiver induces a voltage in the antenna
circuit. This is an interference voltage or noise signal. After
passing through the mixer and the intermediate frequency (i-f) section

of the receiver, the noise signal is detected, amplified, and then
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converted to sound by the speaker. The overall characteristics of the
mixer and of i-f sections are bandpass in nature, i.e., only small range
of frequencies from t. to ‘b and centered ‘0 is transmitted without
sppreciable attenuation.

Let Y(jw) be the overall transfer function of the mixer and i-f
sections of the receiver. Let N.(x.y,z.u) be the power spectral density
of the output of the receiver. Then, w‘ can be written in terms of
input vz and the transfer function by (see pp 173-174 of (31} for

detailed discussion)
N (x.y.2,0) = 1¥(jCw - uo)]l’ wz(x.y.z.o) (4.46)

where it is assumed that the receiver is & narrowband filter and the
input noise signal is broadband. Yo is the frequency to which the
receiver is tuned.

For the total average intensity, we have alternatively (by the

Wiener-Khintchine theorem)
n.(x.y.z.t) = E (c(x.y.z.to) c(x.y.z.to -t)}
= 1/2 P(ﬂ‘(x.y.z.n))
= 1217 W (x.7,2,0) e Y ¢ . (4.47)

B (x,y,2,0) = Ele(x,y,2,t)?}

-
= 1 IGe1 vy ayazaeg ¢ @) !
0
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= 1% 1Y(e"))? Vp(x,y.2.0, + 0') df’ (4.48)

since v, fileer' feilcer

If the spectral density of the noise signal does not vary strongly

>> 2n Af (.4 {s the bandwidth of the receiver.
with the frequency over the passband of the receiver, the mean square

value of output can be approximated by
E(e(x,y,2,8)") = [Y(Ju')|" Wp(x,y,2.05 + @') 8., . (4.49)

If it is further assumed that the output noise signal is ergodic,
the mean square value of output is same as the time average of the

square of any member of output ensemble e(x,y.z,t), i.e.,
<0(j)(X.y.:.t)'> = E{e(x,y.2,8)?) . (4.50)

Thus, in the extension of the femiliar nonstetistical treatment of
deterministic noise signal in the time and frequency domains, analogous
relations in the case of the ensemble and its representative members can
be now constructed. Thus, if the output noise signal is ergedic, the
time average of the square of the noise measurement represents the mean

square value of output noise.
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V. RADIO INTERFERENCE IN THREE PHASE TRANSMISSION LINES
A. Introduction

The analysis of Rl on short multiconductor line involvc; two
important elements: firstly, a modal propagation analysis of Rl and
secondly an analysis of the short line effects, taking fnto account the
effect of the terminating impedances.

In the case of short lines, the propagation analysis is
complicated by the reflection of the voltage and current waves which
might be produced at the two ends of line, depending on the impedance
networks terminating two ends. In the general case, such reflection may
result in the mixture of the different modes or intermode coupling,
which will make the RI propagation analysis extremely difficult. There
exist certain types of line terminations, however, which either
completely eliminate or reduce to a negligible level, any intermode
coupling.

In this decoupled three phase transmission line, most of the RI
analysis developed for the single-conductor line can be directly
applicable in the three phase Rl analysis. Thus, in this chapter only
decoupled line will be considered in order to avoid unnecessary

complexity in the Rl analysis and to make the Rl analysis more clear.
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B. Trensmission Line Equations

For any three phase transmission lines, the phase currents and
line to ground voltages are related at any point on the line by the
transmission line squations. In time-space domain, thess equations can
be obtained by using the same method for the single conductor line, and

they are as follows:
< wPraa=sR1+1LaPsae (5.1)
- 3a1P7az = ¢ WP/ + JP (5.2)

wvhere

z : the axis of transmission line.

WP : 3x1 column vector, Vi denote the line to ground voltages in
phase {.

1P : 3x1 column vector, !i denote the phase currents in phase §.

R : 3x3 square matrix, Rij denote the frequency dependent
resistances between the ith conductor and jth conductor
including the Carson’s return.

L : 3x3 square matrix, Lij denote the frequency dependent
self (i = j) and mutual (i # j) inductances of the line
including the earth effect.

C : 3x3 square matrix, cij denote the self and sutual capacitances
of the line including the earth effect.

JP : 3x1 colusm vector, Ji denote the corona currents

injected into phase i.
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In the derivation of Eqs. (5.1) and (5.2), the conductance of the
line was neglected. It is worthwhile to note that in many physicsl
three phase transwmission lines, earth or ground wires are added above
the phase conductors. In this connection, Eqs. (5.1) and (5.2) must be
considered as the transmission line equations after taking into account
earth wire effects.

Let us consider next an ensemble JT which is obtained from the
ensemble J(z,t), 0 S 2 S L, -»w <t < », with B(Ji(x.t)‘) < « for every
finite interval (t) and for i = 1,2, and 3, so that Jp vanishes
everywhere outside (-T/2,T/2). Then, Eqs. (5.1) and (5.2) can be

written as follows:
. W’(z,:).rllz =R 1"(».:)T + L O!P(z,t).r (5.3)
. u"(z.r.),/az =C av’(z.nl./a: + .1"(::.:)T , (5.4)

where VT and IT are the voltage and current when the corona events are
considered only in -T/2 $ ¢t $ T/2. If it is assumed that each component
of JT’ “T' and IT is absolutely integrable w.r.t. t, then there exist
the Fourier transforms of VT' JT’ and IT componentwise. It is noted
that the Fourier transforms of matrices or vectors are defined

componentwise as follows:

F{V) = [F(V (5.5)

"

Taking the Fourier transforms on both sides of Eqs. (5.3) and
(5.4), we have
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- WP(z,0) 02 = 2 1P(2,0); (5.6)

- aP(z,0) /92 = ¥ VP(z,0), + IP(2,0),, (5.7)
where,

Z=R+ jul (3.8)

Y= juC | (5.9)

X(2,0) = F{X(a,0)), for = v.P, L.P, or &P (5.10)

Combining Eqs. (5.6) and (5.7),

1P (z.0)/37 - P VWP(z.0), = 2 Py, (5.11)
where

P=2Y . (5.12)

Equation (5.11) or Eqs. (5.6) and (5.7) are the basic transmission
line equations to determine the noise voltage caused by corona
discharges. In the following section, the modal method will be

introduced to decouple the transmission line equations.
C. Modal Analysis

For multiphase transmission line analysis, the use of symmetrical
components is appropriate most of the time. Although symmetrical

components are widely used in power system analysis, they are of
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jmspractical use in this problem. At these high frequencies, the
asymmetry of the line cannot be neglected. Therefore, the general
eigenvalue or modal analysis is adequate for this purpose through the
use of the similarity transformations. Using this technique, & lossy
line consisting of n conductors has n eigenvalues or modes of
propagation. Each of these modes consists of particular voltage and
current compesition, velocity and attenuation at a given frequency.

The main advantage of this modal method is the use of a
transformation sethod which, when applied to the coupled systems, will
decouple them. For this specific study, phase quantities are going to
be transformed into modal quantities.

Let S and Q be the voltage and current transformation matrix,

respectively, i.e.,
WwWesgvy (5.13)
?P=q1, (5.14)

where V and | are the component vectors.
Denoting D? by the diagonal matrix whose diagonal clements are
d*/dz*, Eq. (5.11) is written as

m? -p) v," =2 JTP (5.15)
or
(0 -p)ss? v’ =20 Q! P (5.16)

Premultiplying 5°* on both sides of Eq. (5.16),
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-1

) o -pP)sstvPasglzqq! P (5.17)

T
Using Eqs. (5.13) and (5.14),

-1

-1
S (n'-p)sv.r-s ZQJT . (5.18)

Thus,

=1 1

(o? -8 PS)%-S'ZQJT . (5.19)

Let S be the mode]l matrix of P, i.e., the columns of S are the
eigenvectors of P, and let )\? be the disgonsl matrix whose elements are

the eigenvalues of P. Then, Eq. (5.19) becomes

2 _ 2 -1 ‘
(D A V.r =8 " 2Q JT . (S.20)

If

=Q , (5.21)

87120 is o diagonal matrix [38]. Therefore, both sides of Eq. (5.20)
yield component values which are mutually independent. This is the

result needed to simplify the solution of the matrix equations.
D. Solution of Transmission Line Equations

The next step in the RI analysis of three phase transmission
systems is to solve Eq. (5.20). In this section, a transmission line
terminated at both ends in networks producing no or negligible coupling
will be considered in order to avoid extreme difficulties in the RI
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analysis. It can be shown [17] that the following terminal impedance

matrix
z=82°qQ! (5.22)

produces no coupling. In Eq. (5.22), 2% is the modal characteristic
jmpedance matrix defined by [38):

*erlsglzq . (5.23)

From a practical point of view, it could be extremely difficult to
terminate a high voltage transmission line in an impedance network
defined by Eq. (5.22). A more feasible alternative is an impedance
network comprising only of identical impedances between each conductor
and ground {17]). In this case, there is negligible couyl;ng for
practical transmission line configurations.

Consider a short three phase transmission line of length L
terminated in equal impedances between each conductor and ground for
each end. If, on this line, it is assumed that only conductor ! (phase
@) is subject to corona discharge, then,

-1 T
Jp =@ P =50 0P

P P P '
=185 1 8129y 81377 17) (5.24)

Then, the basic transmission line equation can be written as

0 - 1) v, = st zq (s, P P8 (5.25)

P '
war 5i2%r 513 il

Define
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-1

G=8  2Z2Q (5.26)

then, Eq. (5.25) can be reduced to
2 _ g2 ' 4P
(D7 = &) Vo = [8);51+ 823812 833513) ' yp (s.27)
or,
2 ? 2 | 4
d ViT/dz !1 V‘T = ‘x1‘8113 n.). i=1,2,3. (5.28)

It is shown that the matrix 2° connects component currents and

voltages as follows [38):

LS MPLLIE S I O (5.29)

Because of the absence of any intermocde coupling, the propagation
of each mode { may be analyzed as a single conductor line having a
characteristic impedance Zzi. the propagation constant '1’ and terminal
impedances 2A and Z'.

Thus, comparing Eqs. (5.28) and (4.9), the component veoltage due

to corona discharges on conductor 1 only is

N ¥ .lz-z_| ¥ . (z+z2)
(i) . 2€ &) i n i n
Vil (2o@)p = < Z2.,/8, 8, £,7 (gl 21 . LY
«¥.(2L-z_~2) «¥.(2L~|z-2_|)
i n i n
+ '313 + PAi'Bie }, (5.30)
where

(4 (4
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Pgy = (25 - 2¢ 14/ *+ z“)
-2I‘L _
‘i =2 ( - Pai Ppy ® ). (5.31)
zA and ZB sre the impedances between esch conductor snd ground at the

tvo ends of line AB.

In the similar way, the component voltages due to corona
discharges on conductors 2 and 3 (phases b and c) can be obteined. The
component voltages ceused by corona diacharges, therefore, will be given

by
3

(J) (J)
V.7 (z, )= T V' (2,0)
i T oy | k29
o - ¢ j)

_ b

for i =1, 2,3 (5.32)

where, Fi“"&i"!t"i) is defined by the expression in the brace of Eq.
(5.30).

E. Power Spectral Voltage of Component Voltage

The power spectral density of the ith component voltage at a given

point z is evaluated as follows:

vy (z, “)i = lim 2/T E{ V(j)(z.n)T V(J) (z.u); )
Tre

= 125,/8,1% lim 2/T E) z 5. £V r)?
o oy T B @y Fy

= 125,/8,1° IF.T® lim 2/T Bl z 8 f,“-"(e), 3
T+w k=1
2 o 12 3 *
=I2. l Irr‘l luztrzizzs s
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MO EHOW

*

3
=12 /8 017 IR T T TS, 8,

k, 1=}

(1) (3"
* Um 2 B(67 () £19 (o) /T
Ton - Ok Wp £y

3
C 3 *
= 127,/8,17 TF}] : xfx St Iy V(@)
*
(5.33)

where,
- (3 8) P
H‘(u)u %:: 2 E(fk (c»).r f 1(0)7)/1’

= 2/8 yl’l fuled|® . (5.34)

Ak

bracket of Eq. (4.33), if ¥, Py and 2 are replaced by ¥

is the same as the expression in the cutermost square
i* Payr 3nd
Ppg° respectively.

It is noted that, in the derivation of Eq. (5.33), it was assumed

that the mean number of corona events is the same in each conductor.
F. Electric Field Intensity Calculation

The analysis, so far, has led to the derivation of the component
noise voltage in the power spectral form. An expression will be derived
for the electric field intensity which cause radio interference to the
radio placed near transmission line.

For a system of three parallel conductors, the phase voltages and
the phase charges are related as [17]



62
QP = 2n¢ B} VP (5.35)

where, B is the Maxwell's coefficient of capacitance matrix.

Introducing the component voltage given by Eq. (5.13),

oP = 2n¢ 3°} VP (5.36)

1

where, A = B 'S.

Potential function ¢§ at any point P(x,y,z) due to a line charge

qg is given by
o{ - q{/(auco) In(d, /d_)
where,

4y = (x - ’1" * (b + ¥)?
d = (x - 11)’ + (b - i,

and l1 ad hi are the x and y coordinates of conductor i, and the x-y
plane is perpendicular to the axis (z) of the line.

Thus, the total potential at P(x.y¥,z) is

3
F=1 &
i=}l
3 0
=3 ¥/(4we,) In(d../d )
g V0 4/ %1
3 3
= 1/2F ¢ A.. V. In(d../d .)
§=1j§%1 i} ) ii’ ed
3 3

=% (V. 1/2L A lIn(d,./d ) ) .
jo 3 MR Aatnlifde
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The electrical field intensity at P(x,y,z) is the gradient of the

potential function . Therefore, it can be calculated as follows:

E(x,y,3,t) = 39P/ax 1 + 3¢P 0y )
3 3

1
=1 V(z,t),1 A /(d, . d )

ju 3 2,4, 13 %11%1

* [=8h,y(x-1,) & + 4h ((x=1)" + b, ") )

=, i+ cy 3 (5.37)

wvhere, i and j are the unit vector of x and y coordinates, . and oy are
the x and y components of E.

Eq. (5.37) connects the noise voltages on the conductors to the
electric field intensities at & point P(x,y.z). It is noted that in
the derivation of Eq. (5.37), the electric field vectors are assumed to
lie in the plane (xy) perpendicular to the axis of the line (3).

The power spectral density of E may be defined by
Hz(x.y.z.ﬁ) = (w.’(x.y.z,u)‘ + H“(x,y.z.u)y)é (5.38)

where, H‘x and “ey are che power spectral densivies of e and Qy-

respectively. ch and w‘ are given by:

y

3 3
W (x,5.2,0), = I W,(z,0) ) £A 4hy (x-1.)/(d .4 ))I|?
e x =1 v n i=1 in § i if ci
3 3
W (x,¥,z,0)_ = EIW (z,0) | £ A 2h ((x-1,)% +h *}/(d..d_ )I|%.
e ) A v LAY in"'i i i iici

The power spectral density at ground level is given by

3 3
¥ (XJ’.Z.O) = L (z,“) ' T 2A h.[{(X’l )3 + h 3)‘3.
£ I Wylzwyl T 2k i i
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The mean square value of the output field of the receiver placed
near tranamission lines can be evaluated in the same way described in

Section 4.E, and it can be written as follows:

<¢U)(x.y.z,:)'> bt ‘(pr0ztt)

= |¥(je'))? Wg(x,y.2,0#0') Bandwidth .
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VI. DETERMINATION OF RANDOM PARAMETERS FROM THE EMPIRICAL RI
MEASUREMENT

A. Introduction

To evaluate Rl level with the stochastic Rl anslysis developed in
the preceding chapters, random parameters such as the repetition rate,
peak amplitude, and shape of corona pulses, and the mean number of
corona generations per unit length along transmission line must be
determined.

These parameters are randos in nature, and depend on a number of
deterministic and statistical factors. Thus, in order to validate the
theoretical RI analysis, it appears necessary that the random parameters
must be determined by experiments taking into account every possible
deterministic and statistical factor. However, it would be very
impractical to determine the random parameters for every possible state
by experiments because some statistical factors are very hard to
ostimate and it is practically impossible to measure the state of the
conductor surface.

Because of the need for higher transmission voltages &
considerable amount of RI measurements have been made on short full-
scale single- and three-phase test lines as well as on operating lines,
complemented by laboratory investigation on corona discharge
characteristics in the past 15 to 20 years [13,26]. Thus, it appears

reasonable to utilize these considerable amounts of RI measurements,
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instead of a new set of experiments, to determine snalytically the
random parameters generated in the stochastic RI analysis if possible.

It has been found that the most reproducible RI test data are
obtained under heavy rain conditions. An ;npiricol law to determine
corona generation in the heavy rain has been established, based on the
measurements on a large variety of line configurations (2].

Therefore, the new set of experiments to validate the developed
stochastic RI analysis may not be needed if the random parameters can be
satisfactorily determined from corona generstion or other empirical
data.

In this analysis, it will be attempted to determine random

parameters from the generation function.
B. Generation Function

The basic relationship between corona current and the generation
function was originally established by G. E. Adams [14]. However, a
simpler and perhaps more intuitive spproach was presented by C. H. Gary
[18]). The RM8 value of the injected high frequency coromna current,
measured at frequency ¥ and with Af Hz bandwidth, per unit length of
conductor is given by [2,18,19])

I=C r/(Ztgo) (6.1)

where C is the capacitance per unit length between the conductor and the

ground.
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Gary's work extended to multiphase transmission lines. The

squation proves to be valid, put in general metrix form:
(1) = [€) (T)/(2ne) , wasmd . (6.2)

It is, therefore, the generation function which must be considered
as the really specific measure of the cause of interference. [ is
expressed in uA per a*.

It should be noted that the magnitude that can be measured is the
current [ and not the generation function. In & general case, [
represents an intermediary parameter in the calculation of the Rl and
has to be derived from experimental measurements of corona currents and
the capacitance of the systems.

As was previously stated, the most reproducible test data are
cbtained from heavy rain. Besides, heavy rain Rl data have a practical
significance, since generally Rl levels are highest when the rain is

heaviest [2]. An empirical law, based on the results of a large number

of cage and line tests, has been established in (2] as follows:

I, = 85 - 580/g + 38 log d/3.8 (6.3)

where,

r 3

R ° the heavy rain generation function in dB above LA/m®.
g : the maximum gradient in kvm/c- .

d : the diameter of conductor in cm
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It should be noted that the heavy rain generation function in Eq.
(6.3) is the quasi-peak value measured at 1.0 MHz and with 5 kHz
bandwidth.

A joint IEEE/CIGRE Survey [13] has compared the average fair
weather RI level with the heavy rain RI level for operating lines
ranging from 220 kv to 765 kv. From these data and the limited fair
wveather data, an average value of 22 dB difference in generation between

heavy rain and average fair weather is suggested [2,13].
C. Determination of Random Parameters From Generation Functions

The spectral density VJ(U) of the injected corona current due to

single corona discharge has been derived in section 3.C, and is given by
¥ () = 2/8 E(y?) E(Ju(w)|?) . (3.11)

S8ince the mean number of corona events per unit length is ), the

spectral density per unit length ¢(w) will be given by
¢(w) = ) Nylw) . (6.4)

1f the injected corona current is measured with RMS detector

having Af bandwidth, the mean square value of corona current will be
E{I(c)?) = o(w) AF . (6.5)

1f it is assumed that the current signal of the detector is
ergodic, the time average of any member of output ensemble 1(t) can be

obtained as follows:



69
<aD(e,9,2,0)> = (TOH . (6.6)
Therefore, the average injected corona can be given by
<l(”(x,y,z,t)> = (¢(w) M)* . (6.7)

From the preceding section, the RMS value of the injected corona
current, measured at frequency ®y and with Af Hz bandwidth, per unit

length of conductor fs giv‘n by
I=¢C r/(ZIeo) . (6.1}

Equating Eqs. (6.7) and (6.1), random parameter E(y?) can be
obtained, and is given by

E(y?) = (C r[(21=°))' B/(2 Af Ju(w)|? )\) (6.8)

where, B = 1/60, and Af is the bandwidth of the detector.

In order to make the analysis more clear, consider matched line,
in which the power spectral density of noise voltage is given by Eq.
(4.36), {.e.,

? - - -
Vv(x.u) = E_g'_ x? Ju(e) |2 l% (2 -¢ 2ax_ o 2a(L x))
2

+ 'i%‘i"z'lz' cv‘x. G"(wa)lzl .

Substitution of Eq. (6.8) into the above equation yields

cr .. 112,1% . o72ax_ _-2a(L-x)
Uv(x.u) = (—-—zno) -z:-t. | 7% {2 -e e }

Ix_ e-l(L-x)lzl .

x -
+ le- e (6.9)

As L goes to infinity, Eq. (6.9) becomes
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. (LI 2.1 ,1 & 3
Vv(x.u) (m)' I';:i— G+ W) .

Therefore, the RMS interference voltage will be

c?r 1, _4) .4
In the Rl analysis using a generation function, the RMS

interference voltage is given by (see page 164 of [2])

c T
V(x,w) = -;;;;;-zo .

From the above analysis, it is shown that the interference voltage
depends on the number of corona events in the stochastic RI analysis,
but does not in the generation function Rl analysis.

The detailed analysis on Eju(w)|? will be followed in the next

section.
D. Determination of the Mean Square Spectrum of Corona Pulse

The shape of the positive pulse in the high voltage transmission
lines can be represented by the following double exponential form
[35,36):

~bt

i(t) = A (2% - &% . (6.10)

A little simpler expression, which is the special case of Eq. (6.10),
was developed empirically by Perel’'man and Chernobrodov [37]), and is
given by



n

(x-a:)‘

i(t) =Aate (6.11)

A statistical study was made of the parameters of streamer pulses
on twisted conductors 17 to 33 mm in diaseter in [39]). Investigated
vere the shapes of the streamer pulses, the high frequency current
generated by one source of corons, and the varistion of the h.f. noise
current as a function of the pulse of the supply voltage. It was
confirmed in [39) that the corona pulse shape was well approximated by
equation (6.11).

It was found that the build-time of pulses increased with
increasing dismeter of the conductor. The following relationship was
ocbtained between the coefficient 8 and the conductor diaseter (in the

investigated range of diameters from 17 to 33 mm):
a = 10%(2.5d + 28) , l/sec (6.12)

where, d is the conductor diameter in mm.

The impulse amplitude, the variation of the maximum field strength
on the surface of the conductor in the interval from 25 to 34 kv/cm and
the presence of an adjacent conductor st & distance of 0.1 to 0.15 @
from the corona conductor had no important effect on the shape and width
of corona pulses [39]).

Equation (6.11) will be used for the evaluation of Eju(w)}?® in
this section for simplicity. 8ince u(t) has unit peak value, u(t) is

given by

(6.13)
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Taking the Fourier transforms on the both sides of Eq. (6.13), we have
jufu)| = a e/(a? + w?) . (6.14)

At this point, random variable a is assumed to be uniformly

dis:tithcd so that the density function of a is given by

f,(a) = [ll(q - P) forpsasq
0 otherwise. (6.13)

The expectation of |u(w)|? can be ecasily evaluated and the result is

given by:

w(q-p)(w?-pq)

juw|? = ]
(thz ) (Pz,’ul) .

o? -1 -1
Tt (D - e B -

(6.16)

E. Summary and Conclusions

Most parameters generated in the stochastic Rl analysis such as
the repetition rate, peak amplitude, and the shape of corona pulses, and
the mean nusber of corona events are shown to be determined from the
existing RI data. Among these random parameters, the repetition rate
and the shape of corona pulses are assumed to be deterministic. The
peak amplitude of corona pulses is shown to depend on the generation
function, the mean number of corona events, and the mean square spectrum
of basic corona pulse with unit peak amplitude. The mean square
spectrum of basic pulse is determined from the deterministic pulse
shape.



73

From the analysis in Section 6.C, the following may be concluded:

1.

2(

3.

In the generation function RI analysis, interference
voltage is independent of the number of corona events per
unit length.

In the stochastic RI analysis, interference voltage is
dependent of the number of corona events.

The RI value obtained by the stochastic method will be
close to the Rl value obtained by the generation function
method if ) is close to zero.

From Eq. (6.8), as ) goes to zero, however, E(y?) goes to
infinity, which is not possible in practice. Therefore,
one way to determine ) is to know the mean value of peak
amplitude of coronsa pulse, of which theoretical [33] and
experimental [36,37,40,41]) data exist, and use Eq. (6.8).
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VII. NUMERICAL CALCULATIONS AND DISCUSSIONS
A. Introduction

In order to demonstrate practical applications of newly developed
stochastic RI analysis, the radio interference levels represented by the
electric field intensity at the output of the i-f stage of the radio
receiver will be calculated for a high voltage three phase transmission
line.

Line impedances are derived taking into account the conductor
geometry, conductor internal impedances, and earth return path. Since
the method to obtain line impedances is presented well in [42], only the
results are shown in the Fortran program.

A computer program has been developed to calculate Rl levels for
comparative studies, and is shown in Appendix II.

B. Dase Case Line Characteristics

A single-circuit horizontal line shown in Figure 3 is considered
in this chapter. The maximum system voltage is 362 kv. The basic
geometry is chosen as average values presently used for EHV transmission
linés [2]). The average conductor height is used for the purpose of
corona performance calculations and represents the height of a perfectly
horizontal line which yields the same performance as an actual line.

The average height is equal to the mid-span height plus one third of the

sag.
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FIGURE 3. Single-Circuit Horizontal Line Configuration, 345 kv
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The following constants are assumed in the calculations:

Conductor 8 /19 Al / 8t
Bluebird

Shield wire 7/16" St

Diameter of conductor 1.762 in

Diameter of shield wire 0.435 in

Impedance of shield wire 4.97 + j1.58 at 60 Ha

Conductor resistivity 3.21x10"% Q.m

Shield wire resistivity 20:10'° Qe

Earth resistivity 100 2.m

Relative permeability of shield wire 1000
Relative permeadbility of conductor 1

C. Random Parameters

Since the most reproducible Rl test data are obtained under heavy
rain, the generation function represented by Eq. (6.3) is used to obtain

random parameters.

The mean square pcak-anplitudc';7 is given by Eq. (6.8), i.e.,

¥? = (CP/2we ) ?B/(2 At Tu(@)]? M) . (6.8)
Since

VEly -9+ (7 = var(y) + ?, (7.1

¥ can be written by
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y= CP/(Z!:O) /5/(2 Af lu(u)ll A (1 + pc?)), (7.2)

vhere, var(y) = (% pc)?. (7.3)
It should be noted that <l(j)> represented by Eq. (6.7) is an RMS
value. It is an American (ANSI) Standard [43,44] to use & quasi-peak
detector for the measurement of radio interference field from overhead
power lines. Generation functions are also usually represented by quasi-
peak value. Thus, <l(j)> must be converted to a quasi-peak value. [t is
assumed that & quasi-peak value is the same as an RMS value times V2
because peak value is close to quasi-peak value [11,12). Then, when the
generation function is expressed in the quasi-peak value, the peak

amplitude of the pulse is given by

y= CI/(Zuco)Jil(ébt iuiu)l’x (1+pc?). (7.4)

The bandwidth of radio noise meter is assumed to be 5 KHz. The
inverse of build-time (a) is assumed to have 8 uniform distribution
denoted by Eq. (6.15). {u(w)|’ is then given by Eq. (6.16).

A can be approximately determined if the approximated peak
amplitude of corona current pulse is known. The amplitudes of positive
streamers are assumed to be in the range from 30 to 200 milliamperes.

Unknown parameters pc, p, q are assumed as follows:

pc = .75

p=.538

q=23
where, ¥ is given by Eq. (6.12).
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D. Calculated Results

The radio interference fields were calculated for variocus cases to
compare the effects of different factors on the RI levels. These
factors are:

1. Terminating impedances of the line;

2. Mean number of corona events along the line;

3. Frequency (0.1 - 10 Mis);

4. Line length; and

3. Design parameters such as conductor diameter, system

voltage, conductor height, and the phase spacings.

1. Effect of the terminating impedances of the line

Table 1 sgows the radio interference levels for different line
terminations. Four terminations are considered for two different line
lengths.

For a relatively long line, there is no significant difference in
the RI level for different terminations. This fact is reasonable
because the reflective waves from terminations are attenuated to
negligible values. However, the RI field for the line of length 10 »
open-circuited at one end and terminated with a coupled capacitor 4000
pF at the other end is considerably different from the RI fields for the
other cases.

Therefore, it is suggested that a care be given in the analysis of
Rl field data obtained in the short test line and in the extension of
those data to the actual long line.
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TABLE 1. The Effect of Line Terminations on the RI Field

zb and za are the termination impedances of line AB from each conductor

and ground. L denotes the total length of line. RI field is the quasi-
peak value calculated at 1MHz and 5KHz bandwidth. The mean number of
corona events per meter is assumed to be 1. Terminal impedance

«339.79 represents a coupled capacitor 4000 pF.

Terminal lepedances RI Field (dB above uv/m)
2,(M 25(2) L=10m L = 1600 m
10'* 10t 82.860 82.860
10'* <§39.79 69.290 83.162
0.0 0.0 82.285 81.028
<§39.79 -339.79 82.285 82.530
matched matched 82.285 82.530

2. [Effect of the mean number of corona events

To determine the approximated value of ) and the effect of ) on
the Rl field, the Rl fields for different values of ) were calculated
for the constant generation function given by Eq. (6.3). ) is the
random parameter making the stochastic RI analysis distinct from other
Rl analyses. It is noted that in most of cases, corona generations are
assumed to be uniform along the line.

Figure 4 and Tables 2 and 3 show the corona currents of center and
outer phases. The RI fields were calculated for the lateral distance of

15 @ from the outer conductor.
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TABLE 3. The Effect of ) on the Rl field and Corona Current, Case 2

A denotes the mesn number of corona events along the line per meter.
The line is open circuited at both ends (case 2).

The RI field is the quasi-peak value calculated at 1 MHz with 5 KHz
bandwidth. The total length of line is 10 m.

Lamda Current of Current of Rl
Center Phase Outer Phase Field
0.100D-03 0.187D 02 0.138D 02 0.138D 02 0.666D 02
0.158D-03 0.148D 02 0.110D 02 0.110D0 02 0.666D 02
0.251D-03 0.118D 02 0.874D 01 0.874D 01 0.666D 02
0.398D-03 0.940D 01 0.694D 01 0.694D 01 0.666D 02
0.630D-03 0.746D 01 0.551D 01 0.351D 01 0.666D 02
0.100D-02 0.593D 01 0.438D 01 0.438D 01 0.666D 02
0.158D-02 0.471D O1 0.348D O1 0.348D 01 0.666D 02
0.251D-02 0.374D 01 0.276D 01 0.276D 01 0.666D 02
0.398D-02 0.297D 01 0.219D 01 0.219D 01 0.666D 02
0.630D-02 0.236D 01 0.174D 01 0.174D 01 0.666D 02
0.100D-01 0.187D 01 0.138D 01 0.138D 01 0.666D 02
0.158D-01 0.148D 01 0.110D0 01 0.110D0 01 0.666D 02
0.251D-01 0.118D 01 0.874D 00 0.874D 00 0.667D 02
0.398D-01 0.940D 00 0.694D 00 0.694D 00 0.667D 02
0.630D-01 0.746D 00 0.551D 00 0.551D 00 0.668D 02
0.100D 00 0.593D 00 0.438D 00 0.438D 00 0.669D 02
0.158D 00 0.471D 00 0.348D 00 0.348D 00 0.671D 02
0.251D 00 0.374D 00 0.276D 00 0.276D 00 0.674D 02
0.398D 00 0.297D €0 0.219D 00 0.219D0 00 0.678D 02
0.630D 00 0.236D 00 0.174D 00 0.174D 0O 0.684D 02
0.100D 01 0.187D 00 0.138D 00 0.138D 00 0.692D 02
0.158D 01 0.148D 00 0.110D 00 0.110D 00 0.703D 02
0.251D 01 0.118D C0 0.874D-01 0.874D-01 0.715D 02
0.398D 01 0.940D-01 0.694D-01 0.694D-01 0.730D 02
0.630D 01 0.746D-01 0.551D-01 0.551D-01 0.746D 02
0.100D 02 0.593D-01 0.438D-01 0.438D-01 0.763D 02
0.158D 02 0.471D-01 0.348D-01 0.348D-01 0.782D 02
0.251D 02 0.374D-01 0.276D-01 0.276D-01 0.800D 02
0.398D 02 0.297D-01 0.219D-01 0.219D-01 0.820D 02
0.630D 02 0.236D-01 0.174D-01 0.174D-01 0.839D 02
0.100D 03 0.187D-01 0.138D-01 0.138D-01 0.859D 02
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For reasonable ranges of pulse amplitude from S0 to 200
milliamperes, ) ranges from about 1 to 16. The RI fields for ) less
than 1 show & nearly constant value of about 79.5 dB above wv/a, which
is close to some of the measured or calculated RI fields by various
methods tabulated in Table & (for detailed methods and empirical
formulas, see [2]). However, it should be noted that the RI fields
calculated by the stochastic model are based on the RI data established
in the Project UHV.

TABLE 4. The KI Fields by Different Methods during Foul-Weather

The RI Fields are the quasi-peak value measured at the lateral distance
of 15 @ from the outer conductor at 1 Miaz with 3 KHis bandwidth.

Rl Analysis Method RI Field (dB above uv/m)
Project UHV Base case (USA) 78.5
400-kv-FG (Germany) 78.3
Ontario Hydro (Canada) 75.3
ENEL (Italy) 71.7
EGU (Czechoslovakia) 63.2

From Figure &4, it is observed that the RI values for ) greater
than 1 are significantly different from those obtained by the
conventional RI analysis methods. Therefore, once again, it is shown

that the uniform distribution of corona generation is unpractical.
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Thus, it must be emphasized that the measured RI fields will pretty much
depend on the number of corona events along the line during foul-weather
conditions. However, there may be not much difference between the
stochastic and conventional methods during fair-weather conditions
because the number of corona events is much smaller during fair-weather

than during foul-weather.

3. RI frequency spectrum

The frequency spectrums were calculated over the range from 0.1 to
10 MHz at the center of the open ended line at both ends. In order to
ses the effects of line length and the number of corona events on the RI
spectrum, the Rl fields were calculated for three cases of line length,
and for two values of ) at each frequency from 0.1 to 10 Miz.
Calculated Rl fields are shown in Figures S and 6, and Tables 5 and 6.

From equation (4.33), which is the formula to obtain the power
spectral density of noise voltage, it can be easily noticed that the
shape of Rl spectrum fields is the function of line length, observation
position, propagation constant, the mean number of corona events, and
the shape of basic corona current pulse. The shape of corona current
pulse decides the general trends of Rl spectrus along frequency. The Rl
field, for example, decreases as 20 log(1l/f*?) with frequency of greater
than about 2 MHz [13,24,26,35,36,37]. It is observed that the RI field
decreases about 28 dB with frequency increases from 0.1 to 1 Mz, and 44
dB with frequency increases from 1 to 10 MHz. The 44 dB decrease with

frequency increases from 1 to 10 MHz agrees with most published results.
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TABLE S. RI Field Spectrum for Different Line Length, )\ = 1

The line is open-circuited at both ends. L denotes total line length.
The RI field is the quasi-peak value calculated at the lateral distance
of 15 m from the outer phase conductor with SKHa bandwidth.

Frequency (MHz) L=]10@m L = 1600 m L= 16000 m
0.10000D 06 0.11163D 03 0.11414D 03 0.10376D 03
0.10471D 06 0.11116D 03 0.11191D 03 0.10544D 03
0.10965D 06 0.11068D 03 0.11002D 03 0.10849D 03
0.11482D 06 0.11021D 03 0.10844D 03 0.10885D 03
0.12023D 06 0.10973D 03 0.10724D 03 0.10897D 03
0.12589D 06 0.10925D 03 0.10634D 03 0.10694D 03
0.13183D 06 0.10877D 03 0.10648D 03 0.10154D 03
0.13804D 06 0.10829D 03 0.10714D 03 0.10062D 03
0.14454D 06 0.10781D 03 0.10853D 03 0.10616D 03
0.15136D 06 0.10732D 03 0.11073D 03 0.10730D 03
0.15849D 06 0.10683D 03 0.11398D 03 0.10356D 03
0.16596D 06 0.10634D 03 0.11841D 03 0.10041D 03
0.17378D 06 0.10585D 03 0.11777D 03 0.10026D 03
0.18197D 06 0.10535D 03 0.11205D 03 0.10177D 03
0.19055D 06 0.10485D 03 0.10759D 03 0.10322D 03
0.19953D 06 0.10435D 03 0.10428D 03 0.10043D 03
0.20893D 06 0.10384D 03 0.10222D 03 0.98975D 02
0.21878D 06 0.10333D 03 0.10174D 03 0.10193D 03
0.22909D 06 0.10282D 03 0.10289D 03 0.10124D 03
0.23988D 06 0.10230D 03 0.10552D 03 0.98315D 02
0.25119D 06 0.10177D 03 0.11015D 03 0.98900D 02
0.26303D 06 0.10124D 03 0.10767D 03 0.99176D 02
0.27542D 06 0.10071D 03 0.10219D 03 0.97156D 02
0.28840D 06 0.10017D 03 0.99313D 02 0.98944D 02
0.30200D 06 0.99618D 02 0.96976D 02 0.97958D 02
0.31623D 06 0.99065D 02 0.94955D 02 0.97511D 02
0.33113D 06 0.98506D 02 0.93476D 02 0.96796D 02
0.34674D 06 0.97940D 02 0.92920D 02 0.97530D 02
0.36308D 06 0.97368D 02 0.92603D 02 0.97578D 02
0.38019D 06 0.96788D 02 0.93569D 02 0.95632D 02
0.39811D 06 0.96203D 02 0.95318D 02 0.96607D 02
0.41687D 06 0.95613D 02 0.98616D 02 0.93532D 02
0.43652D 06 0.95015D 02 0.10155D 03 0.93243D 02
0.45709D 06 0.94410D 02 0.96058D 02 0.94456D 02
0.47863D 06 0.93798D 02 0.93583D 02 0.92595D 02
0.50119D 06 0.93178D 02 0.97843D 02 0.92760D 02
0.52481D 06 0.92549D 02 0.10129D 03 0.91106D 02
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Frequency (MHz) L=10m L= 1600 » L= 16000 m
0.38019D 07 0.57139D 02 0.64023D 02 0.59742D 02
0.39811D 07 0.56138D 02 0.66217D 02 0.58690D 02
0.41687D 07 0.55127D 02 0.58643D 02 0.57845D 02
0.43652D 07 0.54112D 02 0.60816D 02 0.57304D 02
0.43709D 07 0.53091D 02 0.64041D 02 0.56590D 02
0.47863D 07 0.52062D 02 0.57441D 02 0.54942D 02
0.50119D 07 0.51025D 02 0.53531D 02 0.53775D 02
0.52481D 07 0.4997¢D 02 0.61102D 02 0.53623D 02
0.54954D 07 0.48919D 02 0.56231D 02 0.51569D 02
0.57544D 07 0.47843D 02 0.60736D 02 0.51832D 02
0.60256D 07 0.46753D 02 0.50370D 02 0.51435D 02
0.63096D 07 0.43637D 02 0.49459D 02 0.49002D 02
0.66069D 07 0.44488D 02 0.50815D 02 0.48584D 02
0.69183D 07 0.43358D 02 0.48794D 02 0.47315D 02
0.72444D 07 0.42494D 02 0.46090D 02 0.47560D 02
0.75858D 07 0.41975D 02 0.45338D 02 0.45269D 02
0.79433D 07 0.41533D 02 0.45214D 02 0.44298D 02
0.83176D 07 0.41173D 02 0.44339D 02 0.44055D 02
0.870%6D 07 0.40901D 02 0.47184D 02 0.43536D 02
0.91201D 07 0.40727D 02 0.41726D 02 0.41898D 02
0.95499D 07 0.40663D 02 0.42341D 02 0.40926D 02
0.10000D 08 0.40732D 02 0.40182D 02 0.39736D 02
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TABLE 6. RI Field Spectrum for Different Line Length, A = §

The line is open-circuited at both ends. L denotes total line length.
The RI field is the quasi-peask value calculated at the lateral distance
of 15 m from the outer phase conductor with 5KHz bandwidth.

Frequency (MHa) L=10m L= 1600 » L = 16000 o
0.10000D 06 0.11477D 03 0.12111D 03 0.11067D 03
0.10471D 06 0.11433D 03 0.11889D 03 0.11239D 03
0.10965D 06 0.11389D 03 0.11699D 03 0.11843D 03
0.11482D 06 0.11345D 03 0.11541D 03 0.11582D 03
0.12023D 06 0.11300D 03 0.11421D 03 0.11594D 03
0.12589D 06 0.112%6D 03 0.11351D 03 0.11389D 03
0.13183D 06 0.11211D 03 0.11345D 03 0.10844D 03
0.13804D 06 0.11167D 03 0.11411D 03 0.10749D 03
0.146434D 06 0.11122D 03 0.11551D 03 0.11307D 03
0.15136D 06 0.11077D 03 0.11771D 03 0.11426D 03
0.15849D 06 0.11032D 03 0.12096D 03 0.11049D 03
0.16596D 06 0.10986D 03 0.12539D 03 0.10730D 03
0.17378D 06 0.10941D 03 0.12475D 03 0.10715D 03
0.18197D 06 0.10895D 03 0.11902D 03 0.10869D 03
0.19055D 06 0.10848D 03 0.11456D 03 0.11016D 03
0.19953D 06 0.10802D 03 0.11125D 03 0.10733D 03
0.20893D 06 0.10755D 03 0.10918D 03 0.10585D 03
0.21878D 06 0.10708D 03 0.10870D 03 0.10885D 03
0.22909D 06 0.10660D 03 0.10983D 03 0.10806D 03
0.23988D 06 0.10612D 03 0.11244D 03 0.10516D 03
0.25119D 06 0.10563D 03 0.11694D 03 0.10579D 03
0.26303D 06 0.10514D 03 0.11453D 03 0.10594D 03
0.27542D 06 0.10465D 03 0.10909D 03 0.10400D 03
0.28840D 06 0.10415D 03 0.10624D 03 0.10581D 03
0.30200D 06 0.10364D 03 0.10391D 03 0.10484D 03
0.31623D 06 0.10313D 03 0.10182D 03 0.10431D0 03
0.33113D 06 0.10261D 03 0.99899D 02 0.10355D 03
0.34674D 06 0.10209D 03 0.98257D 02 0.10352D 03
0.36308D 06 0.10156D 03 0.99235D 02 0.10429D 03
0.38019D 06 0.10102D 03 0.10045D 03 0.10201D 03
0.39811D 06 0.10047D 03 0.10220D 03 0.10322D0 03
0.41687D 06 0.99923D 02 0.10520D0 03 0.10021D 03
0.43652D 06 0.99365D 02 0.10835D 03 0.99977D 02
0.45709D 06 0.98799D 02 0.10294D 03 0.10109D 03
0.47863D 06 0.98225D 02 0.10048D 03 0.99308D 02
0.50119D 06 0.97643D 02 0.10474D 03 0.99510D 02
0.52481D 06 0.97053D 02 0.10821D 03 0.97475D 02
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Frequency (MMsz) L=10a L = 1600 » L = 16000 m
0.54954D 06 0.96454D 02 0.10071D 03 0.98348D 02
* 0.57544D 06 0.95846D 02 0.98730D 02 0.97822D 02
0.60256D 06 0.95229D 02 0.10310D 03 0.96313D 02
0.63096D 06 0.94604D 02 0.98136D 02 0.94022D 02
0.66069D 06 0.93969D 02 0.93395D 02 0.95339D 02
0.69183D 06 0.93324D 02 0.89746D 02 0.94004D 02
0.72444D 06 0.92670D 02 0.90961D 02 0.94318D 02
0.75858D 06 0.92007D 02 0.97182D 02 0.93789D 02
0.79433D 06 0.91334D 02 0.97270D 02 0.93499D 02
0.83176D 06 0.90651D 02 0.93335D 02 0.92233D 02
0.87096D 06 0.89957D 02 0.99404D 02 0.91198D 02
0.91201D 06 0.89254D 02 0.92520D 02 0.90395D 02
0.95493D 06 0.88541D 02 0.93831D 02 0.90517D 02
0.10000D 07 0.87817D 02 0.89068D 02 0.89814D 02
0.10471D 07 0.87083D 02 0.83434D 02 0.86628D 02
0.10965D 07 0.86339D 02 0.89924D 02 0.88218D 02
0.11482D0 07 0.85583D 02 0.90012D 02 0.87355D 02
0.12023D 07 0.84817D 02 0.90868D 02 0.87079D 02
0.12589D 07 0.84040D 02 0.88697D 02 0.84963D 02
0.13183D 07 0.83253D 02 0.87080D 02 0.85440D 02
0.13804D 07 0.82454D 02 0.80431D 02 0.84631D 02
0.14454D 07 0.81644D 02 0.83868D 02 0.82688D 02
0.15136D 07 0.80823D 02 0.84421D 02 0.83126D 02
0.15849D0 07 0.79990D 02 0.87665D 02 0.81996D 02
0.16596D 07 0.79147D 02 0.82228D 02 0.79569D 02
0.172378¢" 07 0.78292D 02 0.76024D 02 0.79900D 02
0.18197D 07 0.77426D 02 0.79227D 02 0.78596D 02
0.19053D 07 0.76549D 02 0.80307D 02 0.78699D 02
0.199%3D 07 0.75662D 02 0.78271D 02 0.77%23D 02
0.20893D 07 0.74763D 02 0.73115D 02 0.76626D 02
0.21878D 07 0.73854D 02 0.76732D 02 0.75381D 02
0.22909D 07 0.72935D 02 0.80093D 02 0.73840D 02
0.23988D 07 0.7200SD 02 0.75259D 02 0.71758D 02
0.25119D 07 0.71067D 02 0.70386D 02 0.73199D 02
0.26303D 07 0.70119D 02 0.75753D 02 0.70534D 02
0.27542D 07 0.69162D0 02 0.72012D 02 0.70129D 02
0.28840D0 07 0.68197D 02 0.70088D 02 0.70446D 02
0.30200D 07 0.67224D 02 0.72854D 02 0.69449D 02
0.31623D0 07 0.66244D 02 0.69030D 02 0.68224D 02
0.33113D 07 0.65258D 02 0.68075D 02 0.67185D 02
0.34674D 07 0.64265D 02 0.73641D 02 0.65342D 02
0.36308D 07 0.63267D 02 0.67128D 02 0.65115D 02
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Frequency (MHa) L=10m L= 1600 m L = 16000 m
0.38019D 07 0.62265D 02 0.66565D 02 0.64121D 02
0.39811D 07 0.61258D 02 0.67842D 02 0.63206D 02
0.41687D 07 0.60248D 02 0.62934D 02 0.62235D 02
0.43652D 07 0.59234D 02 0.63646D 02 0.61384D 02
0.43709D 07 0.58219D 02 0.66490D 02 0.60450D 02
0.47863D 07 0.57201D 02 0.61971D 02 0.59002D 02
0.5011%D 07 0.56182D 02 0.56144D 02 0.57038D 02
0.52481D 07 0.55162D 02 0.63484D 02 0.57062D 02
0.54954D 07 0.54142D 02 0.60498D 02 0.54348D 02
0.57544D 07 0.53121D 02 0.61326D 02 0.53880D 02
0.60256D 07 0.52100D 02 0.52030D 02 0.54306D 02
0.63096D 07 0.51078D 02 0.53082D 02 0.51944D 02
0.66069D 07 0.50055D 02 0.54127D 02 0.51799D 02
0.69183D 07 0.49047D 02 0.52486D 02 0.50307D 02
0.72444D 07 0.48124D 02 0.49138D 02 0.49933D 02
0.75858D 07 0.47310D 02 0.48260D 02 0.47512D 02
0.79433D 07 0.46543D 02 0.47769D 02 0.46484D 02
0.83176D 07 0.45831D 02 0.46660D 02 0.46310D 02
0.87096D 07 0.43185D 02 0.48958D 02 0.45836D 02
0.91201D 07 0.44618D 02 0.44650D 02 0.44458D 02
0.95499D 07 0.44151D 02 0.44181D 02 0.433%9D 02
0.10000D 08 0.43807D 02 0.41497D 02 0.41552D 02
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The 28 dB decrease appears a little higher than the experimental data
which is about 20 dB. This is caused by the lack of exact statistical
data for the build-up time of basic corona pulse. It should be noted
that Eq. (6.12) is the formula of build-up time for the diameter ranges
from 17 to 33 mm.

Line length, measurement position, propagation constants, and )
determine the fluctuations of RI fields with frequencies around the
gecmetric mean RI values which is determined from the basic shape of
corona pulse. The frequency maximums occur at the frequencies at which
P(\;x.b.u.!.pl.pz) represented by Eqs. (6.33) and (6.34) has a maxisum
value. The calculated frequency maximums at the center of line of
length 1600 m occur at .115, .166, .251, .437, .603, .759, and .871 MMz
in the frequency ranges from .1 to 1 MHz. An interesting observation
can be made if it is noticed that the frequency maximums are close to
the frequencies at which one of cos BL, cos 2BL, sin BL, and sin 2BL is
maxisus a;su-i;. a8 velocity of propagation equal to the speed of light.
This result agrees well with the observations found by tests or
experiments (2,3,36,37,45,46,47].

The mean number of corona events does not appear to affect the
shape of frequency spectrum even though the RI levels increase as it
increases. The measurement position is important in the shape of
spectrum since the frequency maximums shift with ic.

The difference between the maximus and minimum RI levels at a

given frequency can be observed to be as much as 17 dB from Tables 5 and
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6. This fact may explain the fact [26] that the conventional RI
analyses do not entirely explain the differences between the measured
noise fields of different lines, nor the substantial fluctuations in the
RI level. It was found (23] that even in dry weather the RI level can
fluctuate over 12 dB.

From this analysis, therefore, it can be suggested that the RI
analysis in the operating line must be based on the detailed anaslytical
method taking into account the line length, terminations of the line,

the mean number of corona events, and measuring position.

4. Lateral RI field profile

The RI field strength along lateral distance from an open ended
transmission line is shown in the Figure 7. Lateral distance is taken
from center conductor along a horizontal axis in a plane perpendicular
to the line at mid-span.

Figure 8 shows typical lateral attenuation curves for high voltage
lines investigated by a joint CIGRE and lEEE task force [23]. A careful
comparison between the curve in Fig. 7 and 330-400 kv (HORIZ)

attenuation curve in Fig. 8 shows no significant difference.

3. Axial Rl field prefile

Figure 9 shows the RI field strength along axial distance from an
open ended line of length 1 mile. Axial distance is taken along the
axis of the line at 15 m laterally away from the outer phase conductor.

Since there is no axial RI profile reported in published literature,
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this calculated axial RI profile is believed to be useful in the RI
analysis.

From Figure 9, it is found that the difference between the maximum
and minimum R1 fields is as much as 3.94 dB. It can be easily imagined
that the axial locations where the maximums and minimums occur depend on
the terminations of the line.

The numerical result in this section, therefore, suggests the need

of a axial RI profile to find the maximum RI field.

6. Design parameters
In the prelimsinary stages of the line design one is perhaps

interested, not so much in an accuracte determination of the Rl level of
a proposed design, but more in cbtaining a rough idea of weather or not
the RI level is within reasonable limits. Or perhaps one is interested
in obtaining a quick indication of how a small decrease in conductor
size, or increase in phase spacing, or change in conductor height, etc.,
will affect the Rl level. This section gives such design curves,
enabling one to obtain, with an acceptable degree of accuracy. the RI
level of any line whose geometry is reasonably close to base case
geometry shown in Fig. 3.

The RI levels depending on the design parameters such as diameter,
voltage, conductor height, and phase spacing are given in Figures 10 -
13. In these figures, RI refers to a measuring location 15 m from an
outside phase and are given for a typical ground resistivity of 100 .m
and for a measuring frequency of 1 MHz and meter bandwidth of 5 KHz.
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The curves presented in Figures 10 - 13 refer to specific
conductor diameters, voltages, conductor heights, and phase spacings.
Adjustment of the RI levels determined frowm the curves is necessary if

any of the parameters differ from those of the base case.
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VIII. CONCLUSIONS

A comprehensive and rigorous analysis has been presented in this
dissertation of & stochastic model to predict radio interference caused
by corona on high voltage transaission systems. The enalysis presented

makes the following principal contributions:

1. A stochestic model of the corona current injected into the
high voltage power transmission line has been proposed.
It is found that the proposed corona current is a
stationary process under certain sssumptions. Injected
corona current is represented by the power spectral
density.

2. A rigorous analysis is developed for the derivation of a
stochastic transmission line equation. The solution of a
developed stochastic transmission line equation with the
influence of line terminations is obtained from rigorous
and comprehensive analyses.

3. The power spectral density of interference voltage caused
by corona is obtained by a rigorous stochastic analysis.

4. The radio interference field strength at the radio receiver
located near the line is developed by using the Wiener-~
Khintchine theores.

5. It is shown that the single conductor stochastic RI
analysis can be easily extended to the three phase RI

analysis.
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6. Most random parameters are shown to be found from existing
RI data obtained by test or experiment.

7. Numerical analysis has shown many important results which
the existing Rl analyses couldn't figure out analytically.
The following are such examples:

1}). The RI level varies as much as 13 dB depending on the
line terminations.

2). The number of corona events along the line significantly
affects the RI level if it is greater than the order of
1, which is assumed to be the number of corona events
during foul-weather conditions.

3). The frequency spectrums are found to vary depending on
the line length, line terminations, mean number of corona
events along the line, measuring position, and the shape
of streamer. It was shown that the RI level fluctuates
as much as 17 dB at a8 given frequency, which was not
entirely explained by the conventional RI analysis.

4). The RI level is shown to vary as much as 4 dB axially.
It is suggested that the axial Rl profile is needed to
find the maxisum RI level.
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XI. APPENDIX I. STATISTICAL PRELIMINARIES

The mathematical theory of probability and the basic concepts of
reandom variables and stochastic process form the basis of the
development in this study. In this appendix, some basic definitions and
results in probability theory, random variables, and stochastic process

vhich are needed in the Chapters 2, 3, 4, and S are reviewed.

A. Elements of Probability Theory

1. Events and probability

The basic notions of probability theory are experiment, event and
probability of events. When formalizing the notions of probability
theory the first assumption is that the results of collection of
experiments under investigation in a given situation are represented by
a certain set @ called space. Every meaningful event corresponds to a
certain set A of 2 in such & manner that the probabilistic operations on
events correspond to set-theoretical operations on the corresponding
subsets of Q.

Moreover the points w ¢ Q correspond to atoms - namely, every
event is a sum of points while each point w cannot be represented as a
sum of other events. It is noted that only arbitrary subset of £ is
called an event. However, one must select out of R a suitable class of
events from both a practical as well as a purely mathematical point of

view.
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Given a space 2, a Borel field, or a o-algebra B of subsets of 2

is @& class of subsets Aj » J= 1,2,... , having following properties

[48,49]:
1. Q¢ B
2. 1f A, ¢ B, then Al' ¢ B
3. If A, ©B, J=1,2,... , then vl Ay € B

A Bore!l field is thus a class of sets, including the empty set ¢
and the space 2, which is clesed under all countable unions and
intersections of its sets.

The space Q along with the G-algebra of sets B defined on it is
called measurable space (R, B) and the subsets of R belonging to B are
called B-measurable sets cr simply measurable sets.

A triple (2, B, P) consisting of a space of elementary events 2, a
selected a-algebra of events B in @, and a measure P on B such that P(R)
= 1 is called a probability space and the measure P is called the
probability (48,49,50,51).

Probability spaces are the initial objects of Probability theory.
This, however, dcoes not contradict the fact that when solving many
specific problems the probability space is not given explicitly.

Given a random experiment E, a finite number P(A) is assigned to
every event A in the o-field B. The number P(A) is a function of set A
and is assumed to be defined for all sets in B. It is assumed to have
the following properties:

1. P(A) 20.
2. PR =1.
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3. For a countable collection of mutually disjoint A,, A

1* Bgrece

in B

PL{UA, ) =1 P(A,).
347y

2. Random variables

The concept of a random variable corresponds to the description of
a8 stochastic experiment which measure a certain numerical quantity X.
It is assumed that for any pair of numbers & and b (& < b) the event
A(a,.b) expressing that X ¢ (a,b) is an observable event.

The point function X(w) is called a random variable (r.v.) if (1)
it is & finite real-valued function defined on & sample space 2 of o
random experiment for which a ptobnbili:y.is defined on the c-algebra B
of events and (2) for every real number x, the set {w: X(w) € x) is an
event in B, i.e., X is measurable on B [51).

The relation X = X(w) takes every element w in R unto & point x on
the real line R = (-», +»). There are many occasions to consider a
sequence of r.v.'s xj , j%1,2,...,n. In these cases, it is assumed that
10 %
secen Xn will then map every element w of R in the probability space

they are defined on the same probability space. The r.v.'s X

unto a point of the n-dimensional Buclidean space. It is noted here
that an analysis involving n r.v.'s is equivalent to considering a
random vector having the r.v.'s as components.

Let X be a random variable with value in the measurable space (R,
B}. The function Fx(x) defined by [31,49])
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Px (x) = P{w: X(w) € x} = P(X S x)

is called the distribution function of X.

A randoa variable X is called a continuous r.v. if its associated
disctribution function is continuous and differentiable almost
everywhere. It is & discrete r.v. when the distribution function
assumes the form of a staircase with a finite or countably infinite
Jumps.

For & continuous r.v. X, the derivative
Ix(x) = de(x)Idx

in this case exists and is called the density function of the r.v. X
(31). On the other hand, the density function of a discrete r.v. does
not exist in the ordinary sense. However, it can be constructed with
the aid of Dirac delta function. Consider the case where a r.v. X takes
on only discrete values Xys Xyaeoos X A definition of its density
funcion is [31)

n

fy(x) ‘jil Pj 6(x - xj)

wvhere 8(x) is the Dirac delta function and

P.=P(X=x

3 P

Let Xj ,j% 1,2,...,n, be random variables with values in the

measurable space (R" , B"). The function

Fx x ...xn"‘l"‘z"""‘n) =PlX, sx) 00 (X Sx))

172



117 *

is called the joint distribution function of & sequence of a n r.v.'s
(x™ (a1).
The corresponding joint density function is defined by (31}

H4 X (xl,xz....,xn) = 3“Fx

€%, %0 pc00pX ) /0%, 0%,...3%
2- %, l...xn 1'72 n 1772 n

xlx
if the indicated partial derivative exists.

3. [Expectation of rendes varisble

Let f(x) be the density function of a random variable X, which may
exhibit either continuous or singular properties, or both. Consider now
some real function g(x) of the original random variable, integrable over
(=, ») with respect to f(x). Define [31)

30 = E{gx)) = /® g(x) £(x) dx (A1)

as the mean value, or expectation of g(X) with respect to the density
function f(x). Here, E is the expectation operator, defined according
to Eq.(A.1). Note that, for purely discrete distributions, this becomes

n
3% = E(g(x)) = J© s(x); Py 6(x - x) dx
1

n
= I g(x.) .
k=1 P
The n th moment of X, L is defined by
o, = E(X ) = {: x® £(x) dx
if 1 " 1x)® £(x) dx is finite. Moments of particular interest are

E{X}, E{X?), the mean and mean-square values of X, while
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E((X - EX)?) = E(X?) - (EX)? = dx'
is called the covariance of X and o its standard deviation.

4. Independence
Let (R, B, P) be a fixed probability space. Two eventa A and B is

called independent if P(A ¢ B) = P(A) P(B).

Random variables xt (i ¢ 1) are independent (51} if for any n and
any ‘k ¢ I, k=1,2,...,n, the joint distribution function of the
variables X“.Xu.....xm is equal to the product of the diatribution
functions of the variables Xin'

n
PIX, 1< 8300, < o) 'kslP(xik <al.
If, therefore, X and Y sre independent,

f(x,y) = £(x) £(y).

B. S8tochastic Processes

1. Definition and preliminary considerations

Random variables or random vectors are adequate for describing
results of random experiments which assume scalar or vector values in a
given trial. In many physical trials, however, the outcomes of random
experiment are represented by functions X(t) depending upon a parameter.
These outcomes are then described by a random function X(t), where t is

the parameter assuming values in a reference set T. Random function,
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random process, and stochastic process will be used synonymously in the
subsequent discussions. Each realization of a given random experiment
is called & sample function or & member function. This description
suggests that a stochastic process (s.p) X(t), t ¢ T, is a family of
sample functions of the variable t, all defined on the same underlying
probability space (2, B, P).

Let {2, B, P) be a given probability space. If the realization of
an experiment is described by means of a function f(t) of a definite
argument t, t ¢ T, it is said that & random function is defined on (R,
B, P) (49].

Thus, & random function is the mapping: w ~ f(t) = f(t,w), w e Q.
Additionally, it is required that the function f(x,w) for a fixed x will
be & random variable. A stochastic process defined in this way is
specified by the probability of the realizations of various sample
functions. This generally requires adveanced mathematics in measure
theory. In order to circumvent this difficulty, another definition of a
stochastic process will be given, which will be more fruitful in this
study.

At a fixed t, a s.p. X(t), t ¢ T, is a random variable. Hence,
another characterization of a s.p. is to regard it as a family of random
variables, say X(tlj. X(tz),.... depending upon a parameter. The
totality of all the random variables define the s.p. X(t).

If to every finite set (tl.;z...,tn) of t ¢ T, there corresponds a
set of r.v.'s X, = X(t)), X, = X(r,),-.-,X = X(t ), having a well-
defined joint probability distribution function
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P"r . .xn("x"l"‘z"z‘ SRR

- P((Xl s xl) e (Xz < xz) LA (Xn < xn)) y N=1,2,...

then this family of joint distribution functions defines a s.p. X(t), t
e T [49).
In the theory of stochastic processes, a commonly used notion for

the joint distribution function given above is

rn(xl':l;““n'tn) = rx ...xn(“l'tli";xn’tn) '

1
and it is called the n th distribution function of the s.p. X(t). Its

associated joint density function, assuming it exists,
tn(xl.tl;..;xn,tn) = I“P(xl.tlz..:xn.tn)laxl...zxn

is the n th density function of X(t).
A complex s.p. Z(t) can be represented by

Z(r) = X(t) + j¥(r)

where X(t) and Y(t) are real s.p.'s. It is clear that Z(t) is

completely characterized by a two-dimensional vector stochastic process.

2. Moments of stochastic processes
As in the case of random variables, some of the most important
properties of a s.p. are characterized by its moments. In the sequel,

the existence of density function shall be assumed.
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In terms of its first density function fl(x,t). the n th moment of
as.p. X(t) at a given t ¢ T, cn(:). is defined by (31,49}

a (t) = B(X"(t)) = 4 & £,(x,t) dx.

The first moment is the mean of the s.p. X(t) at t. The n th central
moment of X(t) at a given point x is

V(€)= E([X(e) = EX(E)]) = U7 (x = )" £,(x,0) du.

-
Of practical importance is uz(:). the covariance of X(t) at t.
The moments of X(t) defined in terms of its second density
function !2(xl‘tl;x2“z) are, in effect, joint moments of two random

variables. The joint moment cn.(tl.tz) of X(t) at t and t, is defined
by (31,49]

0t tp) = EIXP(E)) X%(¢,))
= {: {: xl“xzn £,0x,,8,i%,,8,) dudx,.
ell(tl.tz) is called the autovariance function of the s.p. X(t) and is
denoted by rxx(:l.tz). rx,(cl.zz) = B(X(tl) Y(tz)) is called the cross-
variance function where the random variables involved belong two

different stochastic processes. Similarly, the autocovariance function

of X(t) is given by
gxx(‘l"z) = E[(X(zll - -(:1))(X(tz) - a(tz))]

where, n(:i) = EX(ti). for i = 1,2.
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3. Stationary and wide-sense stationary processes

A s.p. X(t), t ¢ T, is said to be stationary or strictly
stationary [52] if its collection of probability distribution stays
invariant under an arbitrary translation of the time parameters, that

is, for each n and arbitrary v,
Pn(xl.:l;...;xn.tn) = Pn(xl.:l AR ERRRL SEL N 1),

where tJ +t¢T, j=1,2,3,..,n. For practical purposes, a wider
class of stationary stochastic processes is of interest.
As.p. X(t), t ¢ T, is called & wide-sense stationary process
[49,52] if
1. |EX(t)| = constant.

2. EX3(r) < =, E(X(£,) X(t,)) = function of (t, - t,).

4. Ergodicity

Ergodicity deals with the specific questions of relating
statistical or ensemble averages of a stationary stochastic process to
time averages of its individual sample functions.

Let x(j)(t) be a sample function of a stationary s.p. X(¢), vt ¢ T.
The time average of a given function of x(j)(;). s[x(j)(:)), denoted by
< g(xP ()] >, is defined by [31)

<gixwy) > = 113. /2T I: six (e + 0] a

if the limit exists.
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A stationary process X(t), t ¢ T, is said to be ergodic relative

to G if, for every glx(J)(t)). G being an appropriate domain of g| |,

< l(ﬂtj)(t)l > = E(g[X(T)]) with probability one.

5. Independent-increment processes

Consider a s.p. X(t), t 2 0. The random variable X(:z) - X(:l), o
< L3 < tas is denoted by X(tl.tz) and is called an increment of X(t).

It for all ¢, <, < ... <t the increment X(t,,t,),....X(c _,.t ) are
mutually independent, the s.p. X(t) is called an independent-increment
stochastic process. In practice, this definition is used only in the
case of continuous parameter stochastic process.

An important example of an independent-incresent process is the
Poisson process. Short effects, thermal noise, and a large class of
impulse noises are examples of physical situations modeled
mathematically by the Poisson process.

A stochastic process N(t), having following properties is called a
FPoisson process [52]:

1. N(t) is independent of the number of occurrences in an
interval (0,t).

2. pn(t) or P(N(t) = n) depends only on the length t of the
interval and is independent of where this interval is
situated, i.e., pn(t) gives the probability of occurrences

in the interval (tl.t 4 tl) for every :1.
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3. In an interval of infinitesimal length h, the probability

of exactly one occurrence is \h + o(h) and that of more

than one occurrence is of o(h). o(h) is used as a symbol

to denote a function of h which tends to 0 more rapidly

than h.

Two important results on the Poisson process are presented without

proofs (see pp 98 - 100 of [52], pp 123 - 124 of [34] for detailed
proofs).

If N(t), t 2 0 is a Poisson process, then
-t n
p(t) = e gxt¥ . n%0,1,2,... .
n n
The mean and variance can be computed easily and given by
E(N(t)) = M , var{N(t)) = it .

Let N(t), 0 st €T, be a Poisson process. If Ty

are the occurrence time, the joint probability density function of t

Casereslys and N is given by

2
£E).0,, .o N) = £U(N) £,(c)) ... £ (5))

where,

(™ = o™ @M N=0,1.2,...

fl(ti) =T for0st. sT, is1,2,3,..

i

i=1,2,..

. .&.

‘l
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XII. APPENDIX Il. FORTRAN PROGRAM FOR R.I. FIELD CALCULATION

;i

* RADIO INTERFERENCE COMPUTATION w
* BASED ON STOCHASTIC MODELING OF CORONA DISCHARGE *

* ON HIGH VOLTAGE PONER TRANSMISSION SYSTEMS

3

AL Z X2 R X S X T R R R L RS R S R IR RS FA SR RS AR L &4

ABSTRACT

THIS PROGRAM 18 TO COMPUTE RADIO INTERFERENCE FIELD CAUSED
BY CORONA DISCHARGES ON THE HIGH VOLTAGE POWER TRANSMISSION
LINES. LINE CONFIGURATIONS CONSIDERED HERE ARE SINGLE CIRCUIT
-THREE PHASE LINES WITH GROUND WIRLS,BUT ONE CONDUCTOR PER
PHASE.
THE BASIC SCHEME TO CONPUTE R.1. FIELD CAN BE SUMMARIZED AS
FOLLONS :

(1) READ INPUT DATA SUCH AS:
EARTH RESISTIVITY (RHO)
PULSE PERIOD (WIDTH)
BANDVIDTH OF RECEIVER (BAND)
LINE LENGTH (TL)
PROPORTIONAL FACTOR (PC)
TERMINATION IMPEDANCES (TZA, TZB)
LINE TO LINE VOLTAGE (VOLT)
CONDUCTOR HIGHT (HW)
X-COORDINATE OF CONDUCTOR (XL)
RESISTIVITY OF CONDUCTOR (RES)
RELATIVE PERMEABILITY OF CONDUCTOR (RELP)
RADIUS OF CONDUCTOR (RAD)

(2) COMPUTE MEAN AMPLITUDE OF CORONA PULSE (AMP). TO DO THIS
FOLIVING PARAMETERS MUST BE COMPUTED :
GENERATION FUNCTION (GENF)
SPECTRAL DENSITY OF EACH PULSE (WSP)
HAXINUM GRADIENT OF EACH PHASE (GRAD)

(3) COMPUTE LINE PARAMETERS (Z AND Y).

(4) COMPUTE MODAL PROPAGATION CONSTANT (GAM) , TRANSFORMATION
MATRICES (8 FOR VOLTAGE, Q FOR CURRENT),AND CHARACTERISTIC
IMPEDANCES (ZC)

(5) COMPUTE RADIO INTERFERENCE VOLTAGE.
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(6) COMPUTE RADIO INTERFERENCE FIELD.

LT L A X 2 X 2 2 2 2 X X L R 2 X 22 2 2 L XX X2 L AN XL Ry 2 XY L st X & X XL XXy 2]

COMPLEX*16 2(3,3),Y(3,3),8(3,3),Q(3,3),6A4(3,3)
COMPLEX*16 VO(3),2P(5,5),GAMMA(3),AMAT(3,3)
COMPLEX*16 2C(3,3),T2A,TZB,RHA(3) ,RHB(3)

REAL*8 DLA(5,5),BB1(3,3),ALPH(3),RAD(5),VAR(3),AMP(3)
REAL*S XL(5),RFV(3),XLA(800),GRAD(3),F(200),RFI1(1000)
REAL*8 H(S),RES(S),RELP(S),X,DLB(3,3),GAMF(3)

REAL*8 RF12(1000),RAMD,RHO,WA,WB XM ,WIDTH,WSP W ,WK(60)
REAL*8 TL,BAND,KSI,FL,RFI,VOLT,PC,GENF(3),WF

REAL"8 TZ2AR,TZAl,TZBR,TZBI

INTEGER K,N1,N,ND

N: TOTAL NUMBER OF PHASE CONDUCTORS AND GROUND WIRES
K: NUMBER OF PHASE CONDUCTORS
N1: NUMBER OF ITERATION FOR R.1. SPECTRUM.

INPUT DATA AND WRITE OUT THESE DATA.

READ(12,*) TZAR,TZAl,TZBR,TZBI

READ(12,*) RHO,WIDTH,BAND,TL,PC,VOLT
READ(12,%)(H(1),XL(1),RES(1),RELP(I),RAD(T),I=1,N)
WRITE(6,200)

WRITE(6,202) TZAR,TZAI,TZBR,TZBI

WRITE(6,205)

WRITE(6,210) RHO,WIDTH,BAND,TL,VOLT,PC

WRITE(6.213)

WRITE(6,2203 (H(T),XL(1) ,RES(1),RELP(1),RAD(1),I=1,N)

TZA=DCHPLX (TZAR,TZAl)
TZB=DCHPLX(TZBR.TZBI)

COMPUTE LINE TO GROUND VOLTAGE(VO) AND INVERSE OF PEAK TIME OF
CURRENT PULSE (KSI).

VOLT=VOLT/DSQRT(3.D0)
VO(1)=VOLT*(1.0D0,0.0D0)
VO(2)=VOLT*(~-.5D0, -0.8660254D0)
VO(3)=VOLT*(-0.5D0,0.8660254D0)
K81=1.0D09/(2555.6*RAD(1)%2.+27.778)
wWA=KS1/2.

WB=KS1%2.
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COMPUTE MAXWELL'S COEFFICIENT (DLA). REDUCE DLA BY KRON
REDUCTION,AND FIND ITS INVERSE(BBI).

CALL POTEN(N,H,XL,RAD,DLA)
CALL KRONR(N,K,DLA,DLB)
CALL INVR(DLB,BBI)

SET FREQUENCY(W) AND MEAN NUMBER OF CORONA(RAMD).

W=6.283185D06
RAMD=10.

COMPUTE GRADIENT OF CONDUCTOR .

CALL GRADSB(N,K,BBI,VO,RAD,GRAD)

DO 40 I=],.K
GENF(1)=10.%*((85-580./GRAD(!)+38.*DLOG10(RAD(1)*200.00/3.80D0))
1 /20.)/1.0D06

COMPUTE SPECTRAL DENSITY OF PULSE(WSP) AND PULSE AMPLITUDE(AMP).

CALL WSPSB(W,WA,WB,VWSP)
CALL PULAMP(K,RAMD,BAND,WIDTH,GENF ,GRAD,WSP,PC,BBI,AMP,VAR)

THIS DO LOOP COMPUTES SPECTRUM OF é.L(VAlIAﬂN OF R.1. ALONG
FREQUENCY) FROM .1MHZ TO 10 MHZ.

DO 500 L=1,N1
F(L)=10.%%(.02*DFLOAT(L)+4.98)
FL=F(L)

W=F(L)»6.283183

COMPUTE LINE PARAMETERS, Z AND Y (SUBPROGRAM IMPED).

COHPUTE FROPAGATION CONSTANT, CHARACTERISTIC IMPEDENCE,
TRANSFORMATION MATRICES, AMAT(=2.#*PI*EPSILON*Y*S) ,ATTENUATION
CONSTANT (SUBPROGRAM TRANS).

COMPUTE REFLECTION COEFFICIENT (SUBPROGRAM REFL)
COMPUTE PROPAGATION FACTORS (SUBPROGRAM GAMF)
COMPUTE RADIO INTERFERENCE VOLTAGE (SUBPROGRAM RIV)

CALL WSPSB(W,WA,WB,WSP)

CALL IMPED(N,K,FL,RES,RELP,DLA,RAD,RHO,H,XL,BB1,2P,2,Y)
CALL TRANS(K,NB,WK,FL,Z,Y,5,Q,2C,ALPH,GAMMA ,GAM, AMAT)
M=TL/2.

CALL REFL(K,TZA,TZB,TL,2C,GAM,RHA,RHB)

CALL GAMSB(K,ALPH,GAM,RAMD,RHA ,RHB,TL,XM,2C,GANF)
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CALL RIV(K,AMP,VAR,WSP,WIDTH,S,GAMF,2C,RFV)

c
c COMPUTE R.I. PROFILE ALONG LATERAL DISTANCE AT 1 MH2
c
IF(DABS(F(L)~-1.0D06).GT.100.) GO TO 150
X=-1.0D0
DO 60 I=1,101
X=X+1.0D0
XLA(1)=X
[
[ COMPUTE RADIO INTERFERENCE FIELD RFI (SUBPROGRAM FIELD)
Cc
CALL FIELD(K,N,AMAT,X,H,XL,BAND,RFV,.RFI)
60 RFI1(1)=RF!
c
[ WRITE OUT R.I.( DB ABOVE MICROVOLT PER METER ).
[
PRINT,' '
PRINT,' e |
PRINT,' R.1. AT 1 MHZ ALONG LAT. DIST.(DB ABV MV/M)'
PRINT,' '

WRITE(6,320) (XLA(I),RFI1(1),1=1,101)

COMPUTE R.I. FOR VARIOUS FREQUENCY AT 15 METERS FROM OUTER
CONDUCTOR.

=000

30  X=XL(2)+15.D0
CALL FIELD(K,.N,AMAT,X.H,XL,BAND,RFV,RFI)
RF12(L)=RF!

300 CONTINVE

WRITE OUT R.1. SPECTRUM.
WRITE(6,320) (F(I),RF12(1),1=1,N1)

200 FORMAT('1’,9X, TERMINATION A',14X, TERMINATIONB')
202 FORMAT(/,4D14.53)
205 FOR”AT(II:SX: 'RHO' ,7X, 'WIDTH® ,6X, 'BAND® ,7X, " TL' ,7X, 'VOLT’ , 7X,
1 PC)
210 FORMAT(//,F10.2,F10.4,4F10.2)
215  FORMAT(//,3X,'HIGHT' ,4X,'XL',10X,7X, 'RELP’,
1 7%, 'RELPER’ ,4X, "RADIUS')
220 FORMAT(/,2F10.2,D12.4,F10.1,D12.4)
320 FORMAT(/,3X,2D15.5)
STOP
END

aan
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SUBROUTINE TO MULTIPLY(K1,K2)*(K2,K3)

SUBROUTINE MULT(K1,K2,K3,MAT1,MAT2,B)
COMPLEX*16 MAT1(3,3),MAT2(3,3),B(3,3),5U4
INTEGER L
DO 200 I=1,K1
DO 200 L=1,K3
SUM=(0.D00,0.00)
DO 150 J=1,K2
150 SUM=SUM+MATI(I,J)*MAT2(J,L)
B(I,L)=SUM
200 CONTINUE
RETURN
END

SUBROUTINE TO INVERT (3,3) COMPLEX MATRIX.

SUBROUTINE INVC(U,MAT)
COMPLEX*16 U(3,3),V(3,3) MAT(3,3),DTR
DTR=U(1,1)*U(2,2)*U(3,3)+U(1,2)*U(2,3)"U(3,1)+U(1,3)7U(2,1)*U(3,2)
*-U(1,3)*U(2,2)*0(3,1)-U(2,3)*U(3,2)*U(1,1)-U(1,2)*U(2,1)*U(3,3)
v(1,1)sU(2,2)*u(3,3)-U(2,3)*U(3,2)
v(1,2)=U(1,3)*U(3,2)-U(1,2)*U(3,3)
v(1,3)=U(1,2)*u(2,3)-U(1,3)*U(2,2)
v(2,2)=U(1,1)*U(3,3)-U(1,3)%1(3,1)
v(2,3)=U(1,3)*U(2,1)-U(1,1)*U(2,3)
V(3,3)=U(1,1)*U(2,2)-U(1,2)*U(2,1)
V(2,1)sU(2,3)%U(3,1)-U(2,1)%U(3,3)
V(3,1)=U(2,1)%U(3,2)-U(2,2)*U(3,1)
v(3,2)=U(1,2)%U(3,1)-U(1,1)*U(3,2)
DO 10 J=1,3
DO 10 1=1.,3
MAT(1,J)=v(1,J)/DIR
RETURN
END

SUBROUTINE TO INVERT (3,3) REAL MATRIX.

SUBROUTINE INVR(U,MAT)

REAL#*8 U(3,3),V(3,3),MAT(3,3),DTR
DTR=U(1,1)*U(2,2)*U(3,3)+U(1,2)%U(2,3)*U(3,1)+U(1,3)*U(2,1)*U(3,2)

*«U(1,3)%U(2,2)*U(3,1)-U(2,3)*U(3,2)%U(1, nvacnu 2)*U(2,1)*U(3,3)

V(1,1)=U(2,2)%U(3,3)-U(2,3)*U(3,2)
V(1,2)=0(1,3)%U(3,2)-U(1,2)*U(3,3)
V(1,3)=U0(1,2)%U(2,3)-U(1,3)*U(2,2)
v(2,2)=U(1,1)*U(3,3)-U(1,3)*U(3,1)
v(2,3)5U(1,3)%U(2,1)-U(1,1)*U(2,3)
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V(2,1)=U(2,3)*U(3,1)-U(2,1)*(3,3)
V(3,1)=U(2,1)*U(3,2)-U(2,2)*U(3,1)
v(3,2)=0(1,2)*U(3,1)-U(1,1)*U(3,2)
00 10 J=1,3
DO 10 I=1,3

HAT(I,J)=V(1,J)/DIR
RETURN

END

SUBROUTINE TO COMPUTE DLA (=2.*PI*EPSILON*POTENTIAL COEFF. ).
PARAMETERS ARE D (DISTANCE FROM I TH COND. TO IMAGE OF J TH
COND.), SD (DISTANCE FROM I TH COND. TO J TH COND.).

SUBROUTINE POTEN(N,H,XL,RAD,DLA)
REAL*8 H(N),XL(N),RAD(N),DLA(N,N),D,8D
00 100 I=1,N
DO 100 J=1,1
D=DSQRT( (H(1)+H(J))**2+(XL(I)-XL(J))**2)
SD=DSQRT( (H(J) ~H(1) )**2+(XL(J) -XL(1))**2)
IF(1.EQ.J) SD=RAD(I)
DLA(1,J)=DLOG(D/SD)
DLA(J,1)=DLA(1.J)
CONTINUE
RETURN
END

SUBROUTINE TO REDUCE COMPLEX MATRIX Y(N,N) TO X(K,K) BY KRON
REDUCTION.

SUBRCUTINE KRONC(N,K,Y,X)

COMPLEX*16 Y(N.N).X(K.K)

INTEGER END

END=N
END=END-1

DO 20 I=1,END

DO 20 J=1,END

H=END+1
Y(I,0)=¥(1,J)-Y(1,M)*Y(4,J)/¥Y(4.1)

IF(END.GT.K) GO TO 10

DO 30 J=1,K
X(1,7)=Y(1,J)

RETURN

END

SUBROUTINE TO REDUCE REAL MATRIX Y(N,N) TO X(K,K) BY KRON
REDUCTION.
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SUBROUTINE KRONR(N,K,Y,X)

REAL*8 Y(N,N),X(K,K)

INTEGER END

END=N
END=END-1

DO 20 I=},END

DO 20 J=1,END

M=END+1
¥(1,3)=Y(1,J)-Y(1,M)*Y¥(M4,J)/¥(M.M4)

IF(END.GT.X) GO TO 10

DO 30 I=1,K

DO 30 J=} K
X(1,3)=Y(1,J)

RETURN

SUBROUTINE TO COMPUTE SPECTRAL DENSITY OF CORONA PULSE.
PARAMETERS ARE WA(=KS1/2) AND WB(=KSI*2).

SUBROUTINE WSPSB(W,WA,WB,WSP)

REAL*8 W,WA, VB WSP

WEP=3,694328% (DATAN(WB/W) ~DATAN(WA/W) N (WB=WA)* (Wi*2 -WA*WD ) /
#(Whe24WBA*2) / (Wi 24WA*S2) ) /N / (WB-NA)

RETURN

END

SUBROUTINE TO COMPUTE BOTH MEAN AND VARIANCE OF CORONA
CURRENT PULSE.

SUBROUTINE PULAMP(K,RAMD,BAND,WIDTH,GENF,GRAD,WSP,PC,BBI ,AMP,VAR)
REAL#8 RAMD,AMP(K),.VAR(K) ,GENF(K),BBI(K,K),BAND,WIDTH
REAL#8 W8P,PC,8UM,GRAD(K)
DO 20 1=1,K
SU=0.0
DO 10 J=1,.K
SUM=sUM+BBI1 (1,J)*GENF(J)
AMP(1)=DSQRT (WIDTH/ (& . *BAND=RAHD*¥EP*(1.+PC**2)))*SUM
VAR(1)=(AMP(1)*PC)**2
RETURN
END

SUBROUTINE TO COMPUTE MAXIMUM GRADIENT OF CONDUCTOR.
SUBROUTINE GRADSB(N,K,BBI,VO,RAD,GRAD)

COMPLEX*16 VO(K),8UM
REAL#& RAD(N),GRAD(K),BBI(K,K)



aocaaaaaOnn

20

132

DO 20 I=1,K

8U¥=(0.0,0.0)

DO 10 J=1 K
SUh=SUM+BBI(1,J)*V0(J)
GRAD(1)=CDABS (SUM/RAD(1)/100.D0)

RETURN

END

SUBROUTINE TO COMPUTE LINE PARAMETERS, Z AND Y.
PARAMETERS ARE:

XG ; REACTANCE BY GEOMETRY OF CONDUCTOR.
RC ; INTERNAL RESISTANCE OF CONDUCTOR.
RE ; RESISTANCE CONTRIBUTED BY GROUND.
XE ; REACTANCE CONTRIBUTED BY GROUND.
R AND SETA ; PARAMETERS

SUBROUTINE IMPED(N,K,FL,RES ,RELP,DLA,RAD,RHO,H,XL,BBY,2P,2,Y)
COMPLEX*16 Z(K,K),Y(K,K),ZP(N,N)
REAL*8 DLA(N,N),FL,RES(N) ,RELP(N),RAD(N)
REAL*8 RHO,H(N),XL(N)
REAL*8 BBI(K,K),XG,RC,SETA,R.RE,XE
DO 20 I=1,N
DO 20 J=1,1
XG=1.236637D-6*FLADLA(1,J)
IF(1.EQ.J) XG=1.256637D-06*FL*(DLA(1,1)+1.2497442)
RC=6,324553D-4*DSQRT(RES(1)*RELP(1)*FL)/RAD(1)
IF(1.NE.J) RC=0.0D0
R=2.809926D-3*DSQRT (FL/RHO)*DSQRT ( (H(I)+H(J))**2+(XL(1)
} ~XL(J))**2)
SETA=DARCOS((H(1)+H(J))/DSQRT((H(I)+H(J))**24(XL(1)
| =XL(J))#*2))
1F(1.2Q.J) SETA=0.0D0
mz 513274D-6*(DCOS (SETA)/ (DSQRT(2.D0)*R)
~DCOS (2. DO*SETA) / (R*#2)+DCOS(3.*SETA)/ (DSQRT (2.DO)*
* R¥%3)+3,.%DCOS(S.*SETA)/ (DSQRT(2.DO)*R**3) )*FL
XE=2.513274D-6%(DCOS(SETA)/ (DSQRT(2.D0)*R)
* ~DCOS(3.%SETA)/ (DSQRT(2.D0)*R**3)+
* 3.%DCOS(5.*SETA)/ (DSQRT(2.DO)*R**S) )*FL
ZP(1,J)=DCHPLX (RCHRE , XG+RC+XE)
Z2P(J,1)=7%P(1,J)
CONTINUVE
CALL KRONC(N,K,ZP,Z)
DO 30 1=1,K
DO 30 J=1,Kk
¥(1,J)=DCHPLX(0.0D0,3.495419D-10*FL*#BBI(1,J))
RETURN
END
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SUBROUTINE TRANS COMPUTES CHARACTERISTIC IMPEDANCE, ATTENUATION
CONSTANT, PROPAGATION CONSTANT, AMAT.

SUBROUTINE TRANS(K,NB,WK,FL,Z,Y,S,Q,ZC,ALPH,GAMMA ,GAM,AMAT)
COMPLEX*16 2(K,K),Y(K,K),8(K,K),Q(K,K),GAM(K,K) ,AMAT(K,K)
COMPLEX*16 GAMMA(K),2C(K,K)

REAL*8 ALPH(K),WK(NB),FL

INTEGER IER

CALL MULT(K,K,K,Z,Y,AMAT)

SUBROUTINE EI1GCC IS I.M.S.L. LIB TO COMPUTE EIGENVALUES (GAMMA)
» MODAL MATRIX (WHOSE COLUMNS ARE EIGENVECTORS, S) OF (K.K)
COMPLEX MATRIX AMAT. WK(NB) IS THE WORK SPACE.

CALL EIGCC (AMAT.3,3,2,GAMMA,8,3,.WK,IER)

CALL INVC(S,AMAT)

DO 60 I=1,3

DO 60 J=1,3

GAM(1,J)=(0.D0,0.D0)

Q(J,1)=AMAT(1,J)

IF(1 .EQ. J) GAM(I,I)=1./CDSQRT(GAMMA(I))
60 CONTINUE

CALL MULT(K,K,K,GAM,AMAT,2C)
CALL MULT(K,K,K,2C,Z,GAM)
CALL MULT(K,.K.K.GAM,Q,2C)

COMPUTE (AMAT)=- §(2#PI*OMEGA*EPSILON)*(Y)*(8)

CALL MULT(K,K.K,Y,8,AMAT)
DO 70 I=1,K
D0 70 J=1,K

70 AMAT(I,J)=DCHPLX(0.DO,-2.86088D09/FL)Y*AMAT(1,J)
DO 90 I=1,K
DO 90 J=1.K
GAM(1,J)=(0.D0,0.00)
GAM(1,1)=CDSQRT(GAMMA(I))

ALPH(I)=DREALF(GAM(1,1))

RETURN
END

FUNCTION DREALF(A)

COMPLEX*16 A
DREALF=CDABS ( (A*DCONJG(A))/2.D0)
RETURN

END

SUBROUTINE TO COMPUTE RADIO INTERFERENCE VOLTAGE.
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SUBROUTINE RIV(K,AMP,VAR,WSP,WIDTH,S,GAMF,2C,RFV)

COMPLEX*16 S(K,K),ZC(K,K),SUM1,SUM

REAL*8 ANP(K),VAR(K),VSP,WIDTH,GAMF(K),RFV(K) ,WF,AMPV

DO 10 M=1,K

SUM1=(0.D0,0.D0)

DO 20 I=1,K

AMPVSAMP (1)**2+VAR(])

SUM=(0.D0,0.D0)

DO 30 J=1,K

WF=2 *NSP*AMP(I)*AMP(J) /NIDTH

IF(1.EQ.J) WF=2."WSP*AMPV/WIDTH
SUM=SUM+DCONJG(S(J,M4) )*WF
SUM1=SUM1+SUMWS (I M)
RFV(M)=DREALF (SUM1)*GAMF (M) *CDABS (ZC(,M) )**2

RETURN

END

SUBROUTINE TO COMPUTE RADIO INTERFERENCE FIELD.

SUBROUTINE FIELD(K,N,AMAT,X,H,XL,BAND,RFV,.RFI)
REAL*8 X,H(N),XL(N),RFI,SUM3,RFV(K),BAND
COMPLEX*16 AMAT(K,K),SUM1
8UM3=0.0D0
DO 10 I=1.K
SUM1=(0.00,0.D0)
DO 20 J=1,K
SUM1=SUMI+AMAT(J,1)%2.0%H(J)/ ((X-XL(J) )**2+H(J)**2)
SUNI=SUMIRPV(1)*CDABS(SUM1)™e2
RF1=10.%*DLOG10(SUM3I*1.D12*BAND)
RETURN
END

SUBROUTINE REFL COMPUTE REFLECTION COEFFICIENTS.

SUBROUTINE REFL (K,TZ2A,TZB,TL,2C,GAM,RHA,RHB)

COMPLEX*16 TZA,TZB,RHA(K) ,RHB(K),2C(K,K) ,GAN(K,K)

REAL*8 TL

DO 10 I=1,K

RHA(1)=(TZA-2C(1,1))/(TZ2A+2C(1,1))
RHB(1)=(TZB-2C(1,1))/(TZB+2C(1,1))

RETURN

END
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SUBROUTINE GAMSB COMPUTES PROPAGATION FACTOR WHICH IS CAUSED
BY PROPAGATION NF INJECTED CORONA CURRENTS AND THEIR IMAGES
DISTRIBUTED STOCHASTICALLY ALONG TRANSMISSION LINE.

SUBROUTINE GAMSB(K,ALPH,GAM,RAMD,RHA,RHB,TL,XM,2C,GAMF)
COMPLEX*16 RHA(K),RHB(K),2C(K,K),U,R,E,G,CG,P,Q,GAM3,GAMS
COMPLEX*16 GAM(K,K)

REAL*8 ALPH(K),RAMD,TL,XM,GAMF(X),A,B,L,X,S,T,GAM1,GAM2,GAM4 ,D
DO 10 I=1,K

A=ALPH(I)

B=RAMD

P=RHA(1)

Q=RHB(I)

I~TL

X=X

8=CDABS (P)"*2

T=CDABS (Q)**2

U=DCONJG(P)

R=DCONJG(Q)

E=(GAM(I,1)-DCONJG(GAM(1,1)))/2.D0

G=GAN(1,1)

CG=DCONJG(G)

GAM1wB* (2. -DEXP(~2.DO*A*X)*(1-8)-DEXP(-2.D0%*A%(L-X))*(1-T)~

1 DEXP(-2.DO*A*(L+X))#8*(1-T)-T*(1-8)*DEXP(-2.D0*A*(2.D0

Z #*L-X))~S*T*DEXP(-4.DO%A%L))/(2.%A)

GAM2=B*DREALF (P* (DEXP(-2.D0*A%L) -CDEXP(~2.D0* (A*L+E*X) ) )+

Q* (CDEXP(-2.D0*G*(L-X) )~ (1-8)*CDEXP(-2.00*(G*L-E*X))
«S*TCDEXP(-2.D0* (G*L+CG*X) ) )+T*P* (CDEXP(-2.DO* (A*L
+2.D0*E#X) ) -CDEXP(-2.D0%*(2.DO*A*L-CG*X))))/ (A)
GAMI=P* (DEXP(-2.DO%*A*X) ~CDEXP(~2.%G*X) ) +Q (DEXP (-2 . DO%A*
(L-X))-CDEXP(-2.D0*G*(L-X) ) )+P*Q¥ (CDEXP(-2.D0% (G*L-E*X) )+
CDEXP(~2.D0% (A*LAE*X))~2 . #*CDEXP( -2, #G*L) )+U%Q¥ (CDEXP(
=2.D0% (A*L-E*X) ) -CDEXP(~2.D0*(G*L-E*X) ) )+Q*5§* (DEXP(
=2.D0%A*(L+X) ) -CDEXP(-2.D0* (CG*X+G*L) ) ) +P*T% (DEXP(-2.DO*
A*(2.D0*L-X)) -CDEXP(~2.D0* (2. DO*A*L-CG*X)))
GAMI=(GAM3+DCONJG(GAM3) )/ (0.D0,2.D0)*B/CDABS (E)
GAMA=B**2 /CDABS (G)#*2*(CDABS (2 .D0-CDEXP(~1.D0*G*X) -CDEXP(-1.D0
1 #G*(L-X) ) )**2+8%CDABS (CDEXP(~1.D0*G*X) -CDEXP( -1.D0*G*(X+L))
2 Ye#2+THCDARS (CDEXP(~1.D0*G*(2.D0*L~X) ) -CDEXP(~1.D0%*G*(L-X)
3 ) )#e2+48%T4CDABS (CDEXP(~1.D0%G* (2. DO%L~X) )*CDEXP(-1.D0%*G*
4 (L#X)) -2 . %DEXP( -2.DO*A*L) )**2)
GAM5=(2. -CDEXP(~1.DO*CG*X) -CDEXP(
CG#(L-X) ) )*(P*CDEXP(~1.D0*G*X) -P*(1-Q)*CDEXP (-1 .D0%*G* (L+X)
)-Q%(1-P)*CDEXP(~1.D0*%G*(2.D0*L-X) )+Q*CDEXP(-1.D0%C* (L~X)) -
2, %PeQCDEXP (-2 . DO*G*L) ) ¥ Qe (CDEXP( ~ 1 . #CG*X) -CDEXP(-1.%CG*
(X+L)))*(CDEXP(-1.%G*(L-X))-(1-U)*CDEXP(~1.%G*(2.%L-X))+
USCDEXP(-1.%G* (L+X))~2.*USCDEXP(-2.%G*L))

GANS=GAMS+P*T*DEXP (-4 . DO®A*L)* (CDEXP (G*X)+CDEXP(G#(L-X))-2.)

1 *(CDEXP(CG* (X+L) ) ~CDEXP (CG*X) )

GAMS=2 . %B*%2 /CDABS (G)**2*DREALF (GAM5)
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D=CDABS (2.D0*(1.D0-P*Q*CDEXP(-2.D0*G*L) ) )**2

GAMF (1)=(GAM1+GAM2+CDABS (GAM3)+GAM4+CDABS (GAMS5) ) /D
10 CONTINUVE

RETURN

END
SENTRY
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